
Linearity of Expectation, QuickSort, Las Vegas1

1 Linearity of Expectation

• The expectation of a random variable X defined over a sample space Ω is defined to be

Exp[X] =
∑
ω∈Ω

X(ω) ·Pr[ω] =
∑
k∈R

k ·Pr[X = k]

• Linearity of expectation, is one of these gems which are almost trivial2 to establish, but have very
deep consequences. Please get this into your system.

Theorem 1. For any two random variables X and Y , let Z := X + Y . Then,

Exp[Z] = Exp[X] + Exp[Y]

Proof.

Exp[Z] =
∑
ω∈Ω

Z(ω)Pr[ω] Definition of Expectation

=
∑
ω∈Ω

(X(ω) + Y (ω))Pr[ω] Definition of Z

=
∑
ω∈Ω

X(ω)Pr[ω] +
∑
ω∈Ω

Y (ω) ·Pr[ω] Distributivity

= Exp[X] + Exp[Y] Definition of Expectation

As a corollary, by applying the above again and again k − 1 times, we get:

Theorem 2. For any k random variables X1, X2, . . . , Xk,

Exp

[
k∑

i=1

Xi

]
=

k∑
i=1

Exp[Xi]

1Lecture notes by Deeparnab Chakrabarty. Last modified : 26th March, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2The Pigeonhole Principle is another such thing that comes to mind

1

2 QuickSort

• We now look at a randomized algorithm which many of you may have seen before in CS1. It is
QuickSort. Unlike the Equality problem, this algorithm will always return the correct answer. The
catch is that the running time of the algorithm will be different in different runs. That is, the running
time would be a random variable, and today, we will bound its expectation.

• The main idea behind QuickSort is pivoting; using a certain element of the array to break the problem
into two and then recursing on the two sides. More precisely, let q = A[i] be an arbitrary3 element of
the list. Given q, the list A[1 : n] can be divided into 3 lists: A1 := {A[i] : A[i] < q}, A2 = {A[i] :
A[i] = q}, and A3 = {A[i] : A[i] > q}. Note this takes one scan of the list, and thus O(n) time.

1: procedure PIVOT(A, q):
2: . A is list of length n. Returns three lists A1, A2, A3 as desired
3: Initially A1, A2, A3 are null lists.
4: for i = 1 to n do:
5: if A[i] < q then:
6: Append A[i] to A1

7: else if A[i] = q then:
8: Append A[i] to A2

9: else:
10: Append A[i] to A3.
11: return (A1, A2, A3)

• Suppose we recursively sort A1, A3 and suppose B1 and B3 are the sorted versions. Then note, the
sorted order of A is precisely [B1, A2, B3], that is the array B1 followed by the q’s, followed by B2.
The only question then remains is how to choose the “pivot” q. If you remember you divide-and-
conquer and Master theorem, then you will see that you would like q to be such that A1 and A3 (the
arrays you are recursing on) have roughly the same size. But how do we find such a q? To appreciate
this, consider always choosing q = A[1]. Can you come up with an example where A1 and A3 will
actually be of very different sizes? The main idea of Quicksort is to choose q randomly.

1: procedure QUICKSORT(A):
2: . A is a list of length n. Returns a sorted order B
3: Choose i ∈ {1, 2, . . . , n} at random.
4: q ← A[i].
5: (A1, A2, A3)←PIVOT(A, q).
6: B1 ←QUICKSORT(A1).
7: B3 ←QUICKSORT(A3).
8: return B1 appended with A2 appended with B3.

• Analysis.
3It will be good to know the difference between arbitrary and random. When we say arbitrary, we don’t care which element it

is and it may be the worst element for whatever purpose. When we say random, we usually mean uniformly at random among the
choices available. In particular for this example, there is indeed a big difference as you will see

2

Theorem 3. Given any list A[1 : n], the algorithm QUICKSORT sorts it in O(n log n) expected
time.

Proof. There are multiple ways to prove this, and later in the course we may see other methods. But
below is what probably is the “book” proof of the above theorem. It also shows how powerful The-
orem 1 is. This proof is attributed to Richard Karp, one of the great computer scientists currently at
UC Berkeley.

– We start by making some observations. First is that the total time taken by the algorithm is
dominated by the PIVOT subroutine, which itself is dominated by the number of comparisons it
makes of the form “Is A[i] < q?”. Second observe that if two entries of the array A[i] and A[j]
are ever compared, they are never compared again. Thus, the running time of QUICKSORT can
be upper bounded by the number of comparisons the algorithm makes.

– Now suppose B[1 : n] is the correct sorted order of A[1 : n]. Define the indicator random
variable Xij , for i < j, which is 1 if the numbers B[i] and B[j] are ever compared in the
QuickSort algorithm. We don’t just mean the first iteration; we mean anywhere in the full run.
From the above two observations, we get

T (n) = Exp

Θ

 n∑
i=1

n∑
j=i+1

Xij


By Linearity of expectation (and the Θ function), we get

T (n) = Θ

 n∑
i=1

n∑
j=i+1

Exp[Xij]

 (1)

– So, all that remains is to argue about Exp[Xij]. Now comes the third and final observation.
The numbers S = {B[i], B[i + 1], . . . , B[j]} are initially in A (surely). Subsequently, either
we choose a q /∈ S in which case either all of S goes to A1 or all of S goes to A3. Otherwise,
we choose q ∈ S, and in that case in subsequent recursive calls B[i] and B[j] are separated.
Therefore, the only time B[i] and B[j] are compared is the first time q lands in S it must be
either B[i] or B[j]. If it is not, then B[i] and B[j] are never compared.
Put differently, we get

Pr[Xij = 1] ≤ Pr[q ∈ {B[i], B[j]} | q ∈ S]

where the inequality accounts for the case of the presence of A2.r But q is chosen equally likely
among the entries of an array. Thus, given that it falls in S, the probability it is either i or j is
precisely 2/|S| = 2/(j − i + 1).

– If you prefer a little more formality to the above argument, here is one way. Let E be the event
that B[i] and B[j] are ever compared. QUICKSORT picks a bunch of pivots q1, q2, . . . , qT over
the course of its run, with T ≤ n. Let Bt be the event that qt is in S and q1, . . . , qt−1 are not in

3

https://www.quantamagazine.org/gunter-ziegler-and-martin-aigner-seek-gods-perfect-math-proofs-20180319/

S. Clearly, at most one of these Bt’s can occur giving us
∑T

t=1 Pr[Bt] ≤ 1. Also, let B denote
the event none of the Bt’s occur. Now, by the total law of conditional probability, we have

Pr[E] =
T∑
t=1

Pr[E | Bt]Pr[Bt] + Pr[E | B]Pr[B]

Finish up by noticing: (a) Pr[E | Bt] is precisely Pr[qt ∈ {B[i], B[j]} | q ∈ S] = 2
j−i+1 , and

(b) Pr[E | B] = 0, if we never choose a pivot in S, then we never choose either B[i] or B[j] as
a pivot. Therefore,

Pr[Xij = 1] = Pr[E] =
2

j − i + 1

T∑
t=1

Pr[Bt] ≤
2

j − i + 1

– Putting this in (1), we get

T (n) = Θ

 n∑
i=1

n∑
j=i+1

2

j − i + 1


Changing some variables, we get

T (n) = Θ

(
n∑

i=1

n−i−1∑
s=2

2

s

)
≤ Θ

(
n∑

i=1

n∑
s=1

1

s

)
Now we use the fact that

∑n
s=1 1/s = Θ(log n). This gives T (n) = Θ(n log n).

Ponder This: In the QUICKSORT algorithm described above, in Line 3 a pivot index is chosen at
random. In all how many random bits are used? Now consider the a different algorithm. In this,
the pivot is always chosen to be A[1]. Except, before doing anything, we replace A by its random
permutation. Does this modification still give O(n log n) running time? How many random bits
are used by this?

3 Las Vegas Algorithms, Markov’s Inequality, and Monte Carlo-fication

• A randomized algorithm A on input I could always return the correct solution A(I), however, the
running time TA(I) is a random variable. In particular, if one is unlucky the algorithm may just run
for ever. For these algorithms, what is more of interest is the expected running time. In particular, on
input I we care for Exp[TA(I)]. Indeed, the runtime as a function of the size is defined as

TA(n) := max
I:|I|≤n

Exp[TA(I)]

QUICKSORT is a Las-Vegas algorithm. There is something unsatisfactory about having only a bound
on the expected running time. One would probably like to know what is the chance our algorithm is
incorrect.

• This is where another very important tool comes in. This is an example of a “deviation bound” which
tries to bound how far does a random variable deviate from its mean.

4

Theorem 4. (Markov’s Inequality) Let X be a random variable whose range is non-negative
reals. Then for any t > 0, we have

Pr[X ≥ t] ≤ Exp[X]

t

Proof. By definition of expectation, we have

Exp[X] =
∑
k∈R

k ·Pr[X = k] =
∑

0≤k<t

k ·Pr[X = k] +
∑
k≥t

k ·Pr[X = k]

The first summation
∑

0≤k<t k · Pr[X = k] ≥ 0 since all terms are non-negative. The second
summation is

∑
k≥t k ·Pr[X = k] ≥ t ·

∑
k≥tPr[X = k] = t ·Pr[X ≥ t]. Putting it all together,

we get Exp[X] ≥ t ·Pr[X ≥ t], which gives what we want by rearrangement.

• Therefore, for any Las-Vegas algorithmAwith expected running time TA(n), applying Markov (since
runtimes are non-negative) we get that for any input I ,

Pr[TA(I) ≥ 3TA(n)] ≤ Pr[TA(I) ≤ 3Exp[TA(I)]] ≤ 1

3

The first inequality follows since TA(n) is the maximum over all inputs.

This implies the following Monte-Carlo algorithm B for the problem: run A till time 3TA(n). If
the algorithm terminates by then, return what A(I) returns. Otherwise, return ⊥ (which will, by
definition, be the wrong answer). The running time of this algorithm is≤ TA(n). The error probability
is ≤ 1/3 since that’s the probability the algorithm A runs for more than 3TA(n) time.

Learning Tidbits:

• Algorithm Design: Random Choice “thwarts adversary”. The pivot choice is the case in point in
QUICKSORT.

• Analysis: Linearity of Expectation, Choosing the correct indicator random variables, Markov’s
Inequality.

5

	Linearity of Expectation
	QuickSort
	Las Vegas Algorithms, Markov's Inequality, and Monte Carlo-fication

