
Streaming V : Counting Distinct Elements II1

• In the previous lecture, we saw that FLAJOLET-MARTIN gives a O(1)-approximation to the number
of distinct elements, even with the use of pairwise independent hash functions. What if we desire a
better approximation? Note that our proof of theO(1) approximation was not via the usual “unbiased-
estimate + low-variance + medians-of-means” method. Indeed, the estimate is not unbiased. As I
mentioned in the previous lecture, Flajolet and Martin actually proved that a scaled version of their
estimator is indeed (close to) an unbiased one and they also bound their variance, and also prove that
taking averages tends to give a (1 ± ε) approximation to F0. In this lecture, we will see a different
modification of the algorithm which gives an (1 ± ε)-estimate. This algorithm is one of three F0-
estimation algorithms in a paper by Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and
Luca Trevisan.

• The main idea stems from an observation made last lecture. Let us recall the definitions. For any
integer 1 ≤ r ≤ L (where L := dlg ne) and every element e in the stream, we denoteXe,r = 1 if h(e)
contained ≥ r trailing zeros, and Xe,r = 0 otherwise. We denoted Yr :=

∑
e∈DXe,r as the number

of distinct elements in the data stream that have ≥ r trailing zeros. We observed that (and this needed
only pairwise independence in the hash family)

For all 1 ≤ r ≤ L, Exp[Yr] =
d

2r
and Var[Yr] =

d

2r
·
(
1− 1

2r

)
(1)

And thus, the scaled random variable Zr := 2rYr is an unbiased estimate of d. Therefore, by Cheby-
shev, if we want an (1 ± ε)-estimate to d, we need to focus on the r such that 2r ≤ ε2d. More
precisely, Chebyshev gives us

For all 1 ≤ r ≤ L, Pr
[∣∣∣2rYr − d∣∣∣ ≥ εd] = Pr

[∣∣∣Yr − d

2r

∣∣∣ ≥ εd

2r

]
<

2r

ε2d
(2)

Why not then just pick an r which is small enough? The flip is the size required to evaluate Yr. How
do we keep track of Yr? For instance, if r = 1, then Yr is the number of distinct elements which have
≥ 1 leading zeros. But that’s going to be ≈ 1

2 the elements. And note that we need to actually store
the elements to keep track : when the same copy of a previously seen element arrives, we need to
make sure not to double count. So, we need to make sure r is “big enough” such that Yr itself is not
too large. In particular, we want to choose r such that 2r ≈ ε2d; but this can’t be a priori fixed. One
needs to be more ingenious.

Remark: Before moving on, however, note that a “two pass” algorithm leaps out at us. That is,
suppose we could make two scans across the whole stream. Then, in the first scan/stream find
the estimate r by FLAJOLET-MARTIN with the guarantee d

8 ≤ 2r ≤ 4d. In the second pass,
keep track of Yr. That is, explicitly store all elements with ≥ r trailing zeros. We expect this
number to be O(1), and so the total storage will be O(log n) bits. The variance-by-squared-
mean is also a constant, which means O(1

ε2
ln(1/δ)) parallel repetitions will suffice to give us an

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th April, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

https://link.springer.com/chapter/10.1007%2F3-540-45726-7_1

(ε, δ)-approximation to d.

• The idea behind the one-pass algorithm is to start with a “small” r and then keep bumping it up as we
go. Since we are only in the insertion-only setting, the number of distinct elements cannot go down.
To explain this, let us go back to our “wasteful” description of the FLAJOLET-MARTIN algorithm.
Imagine, we have L counters, or rather more precisely, buckets. When an item e arrives, we evaluate
r(e) and then plonk it into the C[r(e)]th bucket if it is not already present. The presence check can
be done via a linear scan (at the end, these buckets will be small, so no real need to be clever here,
but one could use a binary search tree or a hash table). Note that for any r, the sum of the sizes of the
buckets with index bigger than equal to r is precisely Yr. Worth writing this explicitly:

For any 1 ≤ r ≤ L, Yr =
∑
j≥r
|C[j]|

As described so far, the algorithm stores all the elements. But here is the kicker: at any point of time,
the algorithm only stores buckets with index ≥ r such that Yr ≤ c

ε2
for some constant c. In doing

so, it ensures that the algorithm never stores more than c
ε2

elements, and thus never uses more than
O(c

ε2
)-words of memory (or O(c logn

ε2
) bits).

More precisely, the algorithm maintains a bucket index rmin initialized to 1 and only stores the buckets
C[j] with j ≥ rmin. So, when an item e arrives and r(e) < rmin, the algorithm ignores the element.
The algorithm also maintains Yrmin as defined above. Initially, this is 0. If r(e) ≥ rmin, then it adds e
toC[r(e)] if e is not already present. This increases Yrmin by 1. If Yrmin exceeds c

ε2
, then the algorithm

deletes C[rmin] from memory, updates Yrmin, and increments rmin by 1. At the end of the stream, this
rmin is the “r” we wanted: the algorithm outputs est← 2rmin · Yrmin.

2

1: procedure BASIC-BJKST:
2: Choose h : [n]→ [2L] from a strongly universal hash family as in FLAJOLET-MARTIN.
3: C[1 : L] is a list of buckets.
4: rmin← 1, Yrmin ← 0.
5: for arrival of element e do:
6: Evaluate r(e): the number of trailing zeros in h(e).
7: if r(e) < rmin then:
8: Ignore this element e.
9: else:

10: If e is already present in C[r(e)] ignore this element.
11: Otherwise, add e to C[r(e)] and update Yrmin ← Yrmin + 1. . Note that Yrmin =∑

j≥rmin |C[j]| is maintained.
12: . This increase in Yrmin may make it > c

ε2
. The next while loop fixes this.

13: while Yrmin >
c
ε2

do:
14: Delete C[rmin] and update Yrmin ← Yrmin − |C[rmin]|.
15: Update rmin← rmin+ 1. . Note that Yrmin =

∑
j≥rmin |C[j]| is maintained.

16: . Note: if at the beginning of the while loop, C[rmin] > 0, then it runs only
once. But Line 16 may lead rmin to point to a bucket with C[rmin] = 0.

17: return est← 2rmin · Yrmin.

Observation 1. Since items are only inserted, throughout the algorithm Yrmin equals
∑

e∈DXe,rmin,
which is the number of elements in D whose hash has ≥ rmin trailing zeros.

• Analysis of Quality.

Theorem 1. The estimate est returned by BASIC-BJKST satisfies (1 − ε)d ≤ est ≤ (1 + ε)d
with probability ≥ 3

4 .

Proof. If you have followed the intuition of the algorithm, then you probably see that by design the
worry of rmin being “too small” is allayed. The algorithm never stores more than O(1/ε2) items.
The worry, if any, is whether rmin became too big. Or rather, can 2rmin � ε2d? The answer is no.
Consider the time when rmin is incremented from some k to k + 1. At that point, we must have
Yk > c

ε2
. Can k be such that 2k � ε2d? No, because Exp[Yk] =

d
2k

with variance also of that
order, and so whp 2k ≈ ε2d

c in this case. So, the final rmin we output, will almost sure be such that
Var[Yrmin]/Exp2[Yrmin] is small, and therefore, the estimate 2rmin · Yrmin should be a good one.

To make the above proof formal, there is a bit of care needed. Note that we can’t simply argue about
Yrmin as it is a random variable indicated by a random variable. While, (1) is for random variables
with a fixed index. So, a bit more care is needed. To do so, we go over all L possibilities of rmin, and
argue that the probability of something bad is happening is small. What is bad? Well, the bad event
for us is the following: rmin = k but 2kYk is not a good estimate. Let’s define this as an event:

For 1 ≤ k ≤ L, Ek := {rmin = k ∧ |2kYk − d| ≥ εd}

3

We want to prove, Pr[
∨L

k=1 Ek] <
1
4 . We will proceed by union bound. We break the k’s into “small”

and “large”. To define this, let k∗ to be the largest integer such that 2k∗
d ≤

ε2

16 . Then, using Equation (2)
and the union bound, we get

Pr[
∨
k≤k∗

Ek] ≤︸︷︷︸
Pr[A∧B]≤Pr[B]

Pr[
∨
k≤k∗

{|2kYk − d| ≥ εd}] ≤︸︷︷︸
Union Bound and (2)

1

ε2d

k∗∑
k=1

2k ≤ 1

8
(3)

What about the “large” k’s? Well, we bound Pr[
∨

k>k∗
Ek] ≤ Pr[rmin > k∗]. Which means that

Yk∗ >
c
ε2

. By our choice of k∗, we know that 2k∗
d > ε2

32 . That is, Exp[Yk∗] =
d

2k∗
< 32

ε2
, and thus just

Markov gives us that

Pr[Yk∗ >
c

ε2
] ≤ Exp[Yk∗]

c/ε2
<

32

c
<

1

8
if c is large enough.

Putting everything together, we get

Pr[
∨
k>k∗

Ek] ≤︸︷︷︸
Pr[A∧B]≤Pr[B]

Pr[rmin > k∗] = Pr[Yk∗ >
c

ε2
] ≤︸︷︷︸

if c large enough

1

8
(4)

Union bounding over Equation (3) and Equation (4) gives that Pr[
∨L

k=1 Ek] <
1
4 .

• Time and Space: a space saving trick by BJKST. Per update, the algorithm spends time evaluating
r(e). After that, the majority of the time taken is in checking if e is already in C[r(e)]. Since
|C[r(e)]| ≤ Yrmin ≤ c

ε2
, this takes at most O(1

ε2
) time. One can do much better though : either

O(lg 1
ε) by storing C[r(e)] as a binary search tree, or even O(1) amortized time by just hashing. This

forms the lion’s share of the update time.

How about space? There is some space required to store the hash functions. This is O(log n) bits or
O(1) words. The bigger usage of space is the buckets. Note, we only store the buckets for j ≥ rmin,
and we maintain |Yrmin| ≤ c

ε2
. Therefore, the space required is O(logn

ε2
). This doesn’t sound too

bad, till you compare with the space required by FLAJOLET-MARTIN: ignoring the hash function, the
space usage of that algorithm was only lg lg n + O(1) bits. Next, we discuss a space-saving trick by
BJKST which takes motivation from the birthday paradox.

The main idea is again hashing. Note that we don’t really need to store the element e in the bucket. We
just need to make sure when another copy of e arrives we don’t count it again. So instead of storing
e, we just store a hash g(e) for some hash function g : [n] → [s]. The question is how big does s
need to be? If we wanted no collisions at all, that is we wanted g to be perfect, then the constructions
we studied were of size s = O(n). But this defeats the purpose – storing g(e) would take the same
amount of space.

But then we realize that the elements we desire no collision on are the ones ever present in the buckets.
So we ask ourselves : how many distinct elements e ∈ [n] are ever present in the buckets? Crudely,
for every r, the size of the bucket C[r] is ≤ c

ε2
, and there are L = O(lg n) possible such r’s. Thus,

in the run of BASIC-BJKST, if we consider the (random) set S ⊆ [n] that is hashed into the buckets,
this size |S| = O(lgn

ε2
). Therefore, we don’t need the range of g to be large. If g : [n] → [s] where

s = b lg2 n
ε4

, then by a birthday-paradox style argument, the probability there is a collision among the
elements is S is ≤ 1

12 for a large enough b. One can add this to the failure probability, and get the
success probability of the full algorithm to be ≥ 2

3 .

4

1: procedure BJKST:
2: Choose h : [n]→ [2L] from a strongly universal hash family as in FLAJOLET-MARTIN.
3: Choose g : [n]→ [b log

2 n
ε4

] from a UHF.
4: C[1 : L] is a list of buckets. . In reality, one uses a data structure which can dynamically

store buckets indexed via a key
5: rmin← 1, Yrmin ← 0.
6: for arrival of element e do:
7: Evaluate r(e): the number of trailing zeros in h(e).
8: if r(e) < rmin then:
9: Ignore this element e.

10: else:
11: If g(e) is already present in C[r(e)] ignore this element. . Use a binary search

tree, or another hash table
12: Otherwise, add g(e) to C[r(e)] and update Yrmin ← Yrmin+1.. Note that Yrmin =∑

j≥rmin |C[j]| is maintained.
13: . This increase in Yrmin may make it > c

ε2
. The next while loop fixes this.

14: while Yrmin >
c
ε2

do:
15: Delete C[rmin] and update Yrmin ← Yrmin − |C[rmin]|.
16: Update rmin← rmin+ 1. . Note that Yrmin =

∑
j≥rmin |C[j]| is maintained.

17: . Note: if at the beginning of the while loop, C[rmin] > 0, then it runs only
once. But Line 16 may lead rmin to point to a bucket with C[rmin] = 0.

18: return est← 2rmin · Yrmin.

Lemma 1. For any subset S ⊆ [n], the probability there exists e, e′ ∈ S such that g(e) = g(e′) is at
most |S|

2ε4

2b lg2 n
.

Proof. The probability of collision for a fixed pair is ≤ ε4

b lg2 n
since g is drawn from a UHF. The

lemma follows by a union bound over the ≤ |S|2/2 different pairs.

5

