
Experts Problem : Follow the Perturbed Leader1

• In this lecture we look at a different randomized algorithm to solve the experts problem. In some
sense this will be a simpler algorithm to state and implement than the randomized weighted majority
algorithm. In my opinion, it is also a bit surprising, and is yet another example randomized algorithms
are full of surprises. Before we describe this, let us describe possibly the first idea that comes to ones
mind when one discusses the experts problem. It is the “go with the winners” or the “follow the
leader” algorithm.

• Follow the leader. Every day t, we maintain the total losses lossi(t) :=
∑t−1

s=1 `i(s) expert i has
incurred so far. Call it their score at time t. We choose the expert with the smallest lossi(t) and go
with their prediction. That is, a(t) = ei(t). We break ties in a fixed way, say we go with the lower
indexed expert.

It is not too hard to see that these algorithm isn’t that great. Imagine n experts and on day 1 ≤ t ≤ n,
the tth expert predicts 1 while rest predict 0, and the true outcome is r(t) = 0. Let’s see what this
algorithm does. One day 1, every expert’s score is 0, and we go with expert 1 who makes a mistake.
Next days, everyone but expert 1 has score 0, and so we go with expert 2 who makes a mistake. You
see what’s going on. Our algorithm keeps making a mistake. At the end of n days, however, every
expert has made only one mistake! We are n times worse than the worse expert.

• Follow the Perturbed Leader (FTPL). The amazing thing is that this algorithm is “fixable” by a
simple use of randomness. Give every expert i a buffer Xi, and you don’t count their losses till the
total loss exceeds Xi. In some sense, you give expert a random number of “free passes”. Another
way to think about this is when calculating lossi(t), we subtract a “perturbation” Xi from it, and then
go with the best expert, the one with the smallest lossi(t). Turns out that for a clever choice of these
Xi’s (and we will see what this is), this algorithm works.

Formally, the algorithm is as follows. As you can see, it is much easier to implement than RWM.

1: procedure FTPL(ε):
2: For every 1 ≤ i ≤ n, sample Xi ∼ Geom(ε).
3: for Days t = 1 to T do:
4: Select expert i which minimizes l̂ossi(t) :=

∑t−1
s=1 `i(s)−Xi.

5: Predict a(t) = ei(t).
6: Receive r(t) and incur loss `(t) = 1 if a(t) 6= r(t), and `(t) = 0 otherwise.
7: Update l̂ossi(t+ 1)← l̂ossi(t) + `i(t)

We let (a1, a2, . . . , aT ) be the choice of the experts in Line 4 of FTPL. Note that these are random
quantities governed by the Xi’s. The total loss of FTPL can be written as

lossFTPL :=
T∑
t=1

`at(t) where `at(t) is the cost incurred by the atth expert at time t. (1)
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• Be the Perturbed Leader. Our analysis of the algorithm will follow via a fictitious algorithm. By
fictitious we mean that this algorithm will not be a feasible online algorithm. On day t, this algorithm
picks the best expert minimizing the total loss seen so far plus the loss on day t as well, minus the
random buffer Xi. Formally,

On day t, BTPL picks expert i minimizing
t∑

s=1

`i(s)−Xi

Let (c1, c2, . . . , cT ) be the experts picked by the BTPL algorithm. Note that although we cannot
“play” this algorithm, this algorithm is well-defined.

lossBTPL :=
T∑
t=1

`ct(t) where `ct(t) is the cost incurred by the ctth expert at time t. (2)

To summarize, at any time 1 ≤ t ≤ T , we have (note the difference is only on the limits of the
summation)

– (O1) at ∈ [n] minimizes
∑t−1

s=1 `i(s)−Xi among all i ∈ [n].
– (O2) ct ∈ [n] minimizes

∑t
s=1 `i(s)−Xi among all i ∈ [n].

• Analysis.

Theorem 1. Exp[lossFTPL] ≤ mini∈[n] lossi + εT + lnn
ε

The analysis of FTPL follows from a chain of three lemmas which is schematically shown as

Exp[lossFTPL] ≤︸︷︷︸
with additive terms

Exp[lossBTPL] ≤︸︷︷︸
with additive terms

min
i∈[n]

lossi

• We first tackle the second inequality. One way to think about this is as follows : suppose we didn’t add
any perturbation, and could read the future (know `i(t)’s before making our decisions). Then it seems
this choice would be better than any fixed choice since we are always adaptively choosing the best.
This can be formally proven (and indeed is a special case of the above lemma when Xi ≡ 0.) The
lemma below states that adding perturbations can muck this up by the largest value of the perturbation.

Lemma 1 (BTPL has small regret if perturbations are small). Let Xi’s be any perturbations
(not necessarily geometric rv’s). Then for any expert i ∈ [n], we have Exp[lossBTPL] ≤ lossi +
Exp[maxni=1Xi]

Proof. It will simplify the exposition if we assume a “time zero” and define `i(0) := −Xi for every
expert i. In this lingo, we can reword (O2) as

For any 1 ≤ t ≤ T , ct ∈ [n] is the expert i who minimizes
t∑

s=0

`i(t) (O3)
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Let Z := maxiXi. Now we assert

for any 1 ≤ t ≤ T , and for any i ∈ [n],
t∑

s=1

`cs(s) ≤
t∑

s=0

`i(s) + Z (IH)

Before establishing this, note that for t = T , we get that for any i,

lossBTPL =

T∑
s=1

`cs(s) ≤
T∑
s=0

`i(s) + Z ≤︸︷︷︸
since `i(0) = −Xi and Xi ≥ 0

lossi + Z

The lemma would then follow by taking expectations. We now establish (IH) by induction.

For the base case of t = 1, (O3) implies `c1(0)+`c1(1) ≤
∑1

s=0 `i(s), and thus since `c1(0) = −Xc1 ,
we get

`c1(1) ≤
1∑
s=0

`i(s) +Xc1 ≤
1∑
s=0

`i(s) + Z

Now suppose we have (IH) for t ≤ τ − 1, and we want to establish this for τ . We have

τ∑
s=1

`cs(s) =

τ−1∑
s=1

`cs(s) + `cτ (τ)

≤︸︷︷︸
IH with i = bτ

(
τ−1∑
s=1

`cτ (s) + Z

)
+ `cτ (τ)

=

τ∑
s=1

`cτ (s) + Z ≤︸︷︷︸
(O3)

τ∑
s=0

`i(s) + Z

• The next step is the crux of the whole argument. It does say something fascinating: it tells us that if
we add the perturbations which are from the geometric distribution, then there is not much difference
between knowing the future and not knowing the future. At a high level, this is because the difference
between knowing and not knowing is at most 1 (since the `i(t) ∈ {0, 1}), while Xi ∼ Geom(ε)
is going to be “large”. And it is not very likely that a change of 1 can change the minimizer. The
following lemma makes this intuition concrete.

Lemma 2 (The minimizers don’t change much from BTPL to FTPL). For any 1 ≤ t ≤ T ,
Pr[at 6= ct] ≤ ε.

Proof. We will prove that for any i∗ ∈ [n], Pr[ct = i∗ | at = i∗] ≥ 1 − ε, and this will imply the
lemma. Indeed, Pr[at = ct] =

∑
i∗∈[n]Pr[ct = i∗ | at = i∗]Pr[at = i∗] and the above would imply

the RHS is ≥ (1− ε).
For brevity’s sake, for any j ∈ [n], let’s denote Aj :=

∑t−1
s=1 `j(s), and bj := `j(t). Therefore,

at = i∗ implies that

Ai∗ −Xi∗ ≤ Aj −Xj ⇒ Xi∗ ≥ Ai∗ −Aj +Xj
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for all j ∈ [n]. Similarly, we have ct = i∗ if

Xi∗ ≥ Ai∗ −Aj +Xj + (bi∗ − bj), for all j

Next, condition on Xj = xj for all j 6= i∗. Given these (xj)’s, define B := maxj 6=i∗ (xj −Aj) and
b := maxj 6=i∗(bi∗ − bj) ≤ 1. Then note that, (the probability below is only over the randomness in
Xi∗ , for that is the only random variable remaining)

Pr[ct = i∗ | at = i∗, Xj = xj , j 6= i] ≥ Pr[Xi∗ ≥ B + b | Xi∗ ≥ B]︸ ︷︷ ︸
this form precisely motivates the choice of the distribution

(3)

Fact 1 (Memorylessness of Geometric Random Variables). Let X ∼ Geom(p). Then for any param-
eter k, we have

Pr[X ≥ k + 1 | X ≥ k] = Pr[X ≥ k + 1]

Pr[X ≥ k]
= 1− p

Proof. X ∼ Geom(p) implies Pr[X ≥ t] = (1− p)t−1 as the first t− 1 experiments must fail.

Therefore, we get that for any conditioning of Xj = xj , for j 6= i∗, we have

Pr[ct = i∗ | at = i∗, Xj = xj , j 6= i] ≥ (1− ε) ⇒ Pr[ct = i∗ | at = i∗] ≥ 1− ε

And now the following is easily proved.

Lemma 3 (Connecting FTPL and BTPL.). Exp[lossFTPL] ≤ Exp[lossBTPL] + εT .

Proof. Consider the difference between their losses.

lossFTPL − lossBTPL =
T∑
t=1

(`at(t)− `ct(t))

For any 1 ≤ t ≤ T , we see that (`at(t)− `ct(t)) ≤ 1, and is indeed 0 if at = ct. Indeed, we get that

Exp[lossFTPL]−Exp[lossBTPL] ≤
T∑
t=1

Pr[at 6= ct] ≤︸︷︷︸
Lemma 2

εT

The proof of Theorem 1 follows from Lemma 1, Lemma 3, and the following fact.

Fact 2 (Expectation of maxima of geometric random variables.). Let X1, . . . , Xn ∼ Geom(p) be iid
geometric random variables. Then, Exp[maxiXi] ≤ 1 + Hn

p where Hn is the nth harmonic number.

To get a crude bound note that the probability Pr[Xi ≥ C lnn
p ] ≤ 1

nC
by the Chernoff bound (does

this remind you of a problem in the problem set?) So, the probability the max is� lnn
p is negligible

even after union-bounding. This can be used to show the expectation is at most O( lnnp ).
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