
Estimation Algorithms, Chebyshev, Chernoff-Hoeffding Bound1

• One extremely important application of randomized algorithms is in estimation. Imagine there is a
statistic stat you are interested in. For concreteness, let us assume stat is the fraction of Hanover’s
population who are vegetarians. To calculate stat exactly we must ask everyone in Hanover of their
dietary preference. However, the exact statistic is often not important, and what one really needs is
an estimate est of the statistic. And polling or random sampling is the way to obtain such estimates.
In this lecture, we will set the formal definitions of what a “good” estimate is, and what one needs to
obtain one.

• For any statistic stat, an estimate est is a random variable often obtained via a randomized algorithm.
We say est is an unbiased estimate if

Exp[est] = stat (Unbiased Estimate)

For the statistic fraction of vegetarians in Hanover, here is an unbiased estimate: sample an individual
from the Hanover population uniformly at random2 and ask them about their dietary preference. If
they say vegetarian, set est = 1, otherwise set est = 0. If we denote the population of Hanover as n,
then there are stat · n many vegetarians, and (1− stat)n many non-vegetarians. Thus, we get

Exp[est] =
stat · n
n

· 1 +
(1− stat)n

n
· 0 = stat

• Although the above estimate was unbiased, all of us really can feel that it was a pretty bad estimate.
Indeed, it was always 0 or 1. The following definition gives a much more nuanced notion of the
quality of an estimate.

Definition 1 ((ε, δ)-estimate.). An estimate est is a multiplicative (ε, δ)-estimate of a statistic stat if

Pr[est /∈ (1± ε) · stat] ≤ δ

That is, with probability at least (1−δ) (which is high if δ is small), the estimate satisfies (1−ε)stat ≤
est(1 + ε)stat.

There is another notion of (ε, δ)-additive estimate often used when the statistic stat is bounded, as in
the case of fraction of vegetarians where stat ∈ [0, 1].

Definition 2 ((ε, δ)-additive estimate.). An estimate est is an additive (ε, δ)-estimate of a statistic stat
if

Pr[est /∈ stat± ε] ≤ δ

That is, with probability at least (1−δ) (which is high if δ is small), the estimate satisfies (stat− ε) ≤
est ≤ (stat + ε).

1Lecture notes by Deeparnab Chakrabarty. Last modified : 31st March, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2We are completely ignoring how one samples an individual uniformly at random from the population. We are also assuming
that they answer our poll. All these are super-important considerations and are real bottlenecks to good polling. Unfortunately, it is
not in the scope of this course.
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• Variance of an estimator. The main result we want to establish today is to show how to obtain (ε, δ)-
estimates from unbiased estimates. It is an extremely important fact which will be used many times
in this course (and life).

Theorem 1. [Boosting Theorem or the Median-of-Means Theorem.]

Let êst be an unbiased estimator of some statistic stat. Then, one can obtain an (ε, δ)-muliplicative
estimate of stat using K independent samples of êst, where

K =
CVar[êst](
Exp[êst]

)2 · 1

ε2
· ln
(

2

δ

)
where C is some constant. Consequently, one can obtain an (ε, δ)-additive estimate of stat using
K ′ independent samples of êst, where K ′ = CVar[êst]

ε2
· ln
(
2
δ

)
Thus, what really determines the quality of an unbiased estimate is its variance. If the variance, or
more precisely the variance-to-mean-square ratio (which is the square of the standard-deviation-to-
mean ratio). If that ratio is small, then one can obtain a good multiplicative estimate with not “too
many” runs of the unbiased estimator.

Let’s go back to the example of stat being the fraction of vegetarians in a population. We saw an
unbiased estimate êst. What is it’s variance? A calculation gives that

Var[êst] = stat(1− stat)

Thus, if one obtains K = O
(
(1−stat) ln(1/δ)

stat·ε2

)
many independent samples, or in other words polls

that many people independently uniformly at random, then one can come with a very good estimate.
As you can see, the number grows as stat becomes smaller: this is to be expected, if the number of
vegetarians are small, we will need to sample more to detect them. On the other hand, if we only want
to estimate the fraction of vegetarians to within additive 1%, say (so ε = 0.01), then the number of
samples we need is O(stat(1− stat) · ln(1/δ)). Note, and this is something often counter-intuitive to
many, this doesn’t depend on the population size. The same number of people need be sampled3 even
from New York City.

• First obtain an (ε, 13)-estimate using Chebyshev. We will prove Theorem 1 in two steps. Both steps
will also introduce tools which are much more important than the theorem itself.

The first idea is to take a bunch of unbiased estimates and creating a more refined estimate by taking
the mean. Here is the algorithm.

1: procedure BETTER-ESTIMATOR(s):. Assumes access to an unbiased estimate êst.
2: Sample s independent unbiased estimates êst0, êst1, . . . , êsts.
3: Return est′ := 1

s

∑s
i=1 êsti.

Claim 1. Let s ≥ 3Var[êst]

ε2(Exp[êst])
2 . Then, est′ returned by BETTER-ESTIMATOR(s) satisfies

Pr[est′ /∈ (1± ε)stat] ≤ 1

3
3assuming both cities have the similar fraction of vegetarians.
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To prove this, we will use Chebyshev inequality which is the most general purpose deviation inequal-
ity.

Theorem 2. (Chebyshev’s Inequality)

Let X be any random variable. Then for any t > 0, we have

Pr[|X −Exp[X]| ≥ t] ≤ Var[X]

t2

Proof. We first note that

Pr[|X −Exp[X]| ≥ t] = Pr[(X −Exp[X])2 ≥ t2]

Then we notice that D := (X − Exp[X])2 is a non-negative random variable, and therefore we can
apply Markov’s inequality on it to get

Pr[|X −Exp[X]| ≥ t] = Pr[D ≥ t2] ≤ Exp[D]

t2
=

Var[X]

t2

Proof of Claim 1.

– We first calculate the variance of est′. We use two simple facts: Var[cX] = c2Var[X],
and the linearity of variance4 for independent random variables X1, . . . , Xt, Var[

∑t
i=1Xi] =∑t

i=1Var[Xi]. Using these, we obtain

Var[est′] = Var

[
1

s

s∑
i=1

êsti

]
=

Var[êst]

s

Also, recall that Exp[est′] = 1
s

∑s
i=1Exp[êsti] = stat since each êsti is an unbiased estimate

of stat. Thus, taking the mean of s independent samples is still unbiased but the variance decays.
Useful nugget of information.

– Next, we apply Chebyshev on est′ to get

Pr[est′ /∈ (1± ε)stat] = Pr
[
|est′ −Exp[est′]| ≥ εExp[êst]

]
≤ Var[est′]

ε2
(
Exp[êst]

)2 =
Var[êst]

sε2
(
Exp[êst]

)2 ≤ 1

3

• The Chernoff Bound. Claim 1 is great, but the “error probability” is still 1
3 which we would like to

ramp down to δ. If you stare at the proof of the claim, you probably notice that if instead of using
s ≥ 3 ·

(
Var

ε2 Exp2

)
samples, we used 1

δ ·
(

Var
ε2 Exp2

)
many we would have our (ε, δ)-estimate. However,

the next technique shows how we can actually have a muuuuuuuch better dependence on δ. This is
really important if we want our confidence levels really high.

4I guess this is also an important fact which you should recall from CS30/Discrete Probability.
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To explain this best, we introduce one of the most used theorems in TCS: the Chernoff bound, or
the Azuma-Bernstein-Chernoff-Hoeffding-Stein... bound5. Indeed, we will dedicate the rest of this
lecture to understanding this bound, and continue with the proof of Theorem 1 in the next class.

Theorem 3 (Chernoff Bounds). LetX1, X2, . . . , Xn be independent Bernoulli random variables
with each Xi ∈ {0, 1}. Let X =

∑n
i=1Xi. Then, for any ε ∈ (0, 1),

Pr[X ≤ (1− ε)Exp[X]] ≤ e−
ε2 Exp[X]

2 (LT)

and
Pr[X ≥ (1 + ε)Exp[X]] ≤ e−

ε2 Exp[X]
3 (UT1)

For the “upper tail”, that is for “larger” deviations, we have when 1 ≤ t ≤ 4, we have the
following (changing ε to t so as to underscore that the deviation is big)

Pr[X ≥ (1 + t)Exp[X]] ≤ e−
t2 Exp[X]

4 (UT2)

and for t > 4 (really large), we have

Pr[X ≥ (1 + t)Exp[X]] ≤ e−
t ln tExp[X]

2 (UT3)

Remark: Important: Equations (UT1) to (UT3) hold with all Exp[X] occurences replaced by
any upper bound Exp[X] ≤ U .

Remark: Note the asymmetry in the denominators in the exponent. For most applications this
is not important. What are qualitatively more important : (a) things are in the exponent, (b) the
expectation of the sum shows up in the exponent irrespective of the number of terms, (c) the Xi’s
are independent but not necessarily identical, and (d) the dependence on ε in the exponent is
quadratic.

It is instructive to compare with what Chebyshev gives us. To apply Chebyshev, set t = εExp[X]

to get Pr[X ≥ (1 + ε)Exp[X]] ≤ Var[X]

ε2 Exp2[X]
. Unless Var[X] ≤ ε2Exp2[X], the RHS is a trivial

bound. The Chernoff-bound always gives something non-trivial.

• Some consequences.

– Number of heads. Suppose we toss n fair coins and let X be the number of heads we observe.
We know Exp[X] = n

2 . But what really can we say about the “range” of X? In particular, what
is the probability see t more heads than expected, that is, Pr[X ≥ n

2 + t]? Or rather for what
value of t does this get below probability δ?

5There are many such inequalities which bound how far the sum of random variables can deviate from its expectations. Entire
books have been written on this (pdf copies of many of these are freely available).
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https://www.amazon.com/Concentration-Measure-Analysis-Randomized-Algorithms/dp/0521884276
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https://www.springer.com/gp/book/9783319220987
https://bookstore.ams.org/surv-89-s
https://www.amazon.com/Introduction-Concentration-Inequalities-Foundations-Learning/dp/1601988389


This random variable (number of heads in n fair coin tosses) has a name : it is called the Binomial
Distribution or Binomial Random Variable. And the exact answer to the above question is:

Pr[X ≥ n

2
+ t] =

1

2n

∑
j≥n

2
+t

(
n

j

)
and you can sweat hard and figure it out. But it still doesn’t answer after what t will the proba-
bility be at most δ. Is this t = Θ(1) or Θ(log n) or Θ(n) or what? We now see that the Chernoff
bound will lead to the answer.
To this end, define n independent random variables where Xi = 1 if the ith coin toss if head,
and Xi = 0 otherwise. Next, observe X =

∑n
i=1Xi and that Exp[X] = n

2 . Apply Theorem 3
with ε such that εExp[X] = t, that is, ε = 2t

n .

Pr[X ≥ n

2
+ t] ≤ e−

4t2

n2 ·
n
6 = e−2t

2/3n

Therefore, if t ≥
√

3n
2 · ln

(
1
δ

)
, the RHS probability is ≤ δ. The answer is Θ(

√
n). To put in

some numbers, the chances of observing n
2 + 20

√
n is less than 10−100.

Exercise: Repeat a similar calculation to figure for what t we get Pr[X ≤ n
2 − t] ≤ δ.

Remark: By the way, the variance of X is n
4 and thus the standard deviation of X is

√
n
2 .

Indeed, in this case the Chernoff bound tells us that the probability of seeing the number
of heads more than c std-deviations away drops like e−O(c2). Chebyshev on the other hand
says that the probability drops like 1

c2
.

– The Fraction of Vegetarians. For the simple estimation problem of fraction of vegetarians in
Hanover, the Chernoff bound already solves the problem without needing Theorem 1. Indeed,

let us pick k samples êst1, . . . , êstk and return est :=
∑k

i=1 êsti
k . Let Xi := êsti and let X =∑k

i=1Xi. We get Exp[X] = stat · k, and thus,

Pr[est ≥ (1 + ε)stat] = Pr[X ≥ (1 + ε)stat · n] ≤ e−
ε2

3
·stat·k

Therefore, if we choose k such that k · stat · ε23 ≥ ln(2/δ), we would get that Pr[est ≥ (1 +

ε)stat] ≤ δ
2 . The application of the other Chernoff bound would give Pr[est ≤ (1−ε)stat] ≤ δ

2 .
Which would imply Pr[est /∈ (1± ε)stat] ≤ δ, that is, est is an (ε, δ)-multiplicative estimate.

This gives us k ≥ 3 ln(2/δ)
stat·ε2 samples are sufficient (as we had found before, up to constants).

Learning Tidbits:

• Algorithm Design: When you design an unbiased estimate êst, it is the Var[êst]/Exp2[êst]
which defines the quality. If this is “small”, then with that many samples times 1

ε2
ln(1/δ), one

can get an (ε, δ)-estimate est.
• Analysis: Chernoff Bounds! (Hard to overstate its importance)
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