
Estimating #DNF : Importance Sampling1

• A DNF formula is a Boolean formula with n variables and m disjunctive clauses C1, . . . , Cm; a
clause is a disjunction if it is an AND of a collection of literals (a Boolean variable or its negation).
The formula is an OR of these clauses. In English, a DNF formula evaluates to true if at least one of
its clauses evaluates to true, and a disjunctive clause evaluates to true if all of its literals evaluates to
true. It is convenient to think of ANDs as product, ORs as sum, negation as difference from 1, true as
1, false as 0, and a formula evaluates to true if its value is > 0. For example,

φ = x1x2x3 + x1x2x4 + x2x3x4

is a DNF formula with 4 variables and 3 clauses. It has many satisfying assignments: (true, true, false, true)
or (1, 1, 0, 1) is simply one.

The #DNF problem, or the DNF counting problem, takes as input a DNF formula and returns the
number of satisfying assignments φ has. This is a special case of the general counting problem
: given a Boolean function f : {0, 1}n → {0, 1}, how many x ∈ {0, 1}n leads to f(x) = 1.
Throughout, we will use N to denote the true number of satisfying assignments. Our goal is to obtain
an (ε, δ)-multiplicative estimate of N, and we wish to find an algorithm which runs in polynomial
time.

• Try 1: Rejection Sampling. We start by describing a “not-so-great” approach which is traditionally
called rejection sampling. The idea is extremely simple: we sample an x ∈ {0, 1}n and check if
φ(x) = 1 or not. Here φ is the DNF formula which I am thinking of as a Boolean function. If it
satisfies, we set êst = 2n, otherwise we set êst = 0. The time taken to sample is precisely the time
taken to evaluate φ(x) = or not, and this takes O(m+ n) time.

What is Exp[êst]? Well,

Exp[êst] = 2n ·Pr[φ(x) = 1] = 2n · N
2n

= N

Thus, êst is an unbiased estimate. To apply the boosting theorem to obtain an (ε, δ)-estimate, we need
to figure out Var[êst]. In particular, we are interested in the ratio of variance-to-squared-mean. We
see,

Var[êst] = (2n)2 · N
2n
− N2 = N · (2n − N) ⇒ Var[êst]

Exp2[êst]
=

2n

N
− 1

If N is (very) large, then we see that this number is not bad. However, even if N = 1.9n, then this
ratio is exponentially large in n. Therefore, this estimate would need a lot of independent samples to
give anything good. By the way, observe that the above process didn’t use the fact that φ was a DNF
at all, and would work for any Boolean function. The better estimate will use the structure of φ.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 15th April, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



• Importance Sampling. The main reason the above rejection sampling algorithm doesn’t work is
because most of the time is spent rejecting. When N � 2n, then we are indeed trying to find the
size of a (really tiny) needle in a haystack, and if we randomly reach out, then we will be clutching at
straws (ha! ha!). The idea of importance sampling is to directly get to the needle.

To set up the stage, let’s introduce two bits of notation. For clause Ci, let us denote Si := {x ∈
{0, 1}n : x satisfiesCi} as the set of assignments which satisfies the ith clause. What we are interested
in is (and this is where DNF-ness is used)

N =

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣
Observe two things: (a) |Si| is very easy to evaluate; indeed, |Si| = 2n−ki where ki is the number of
literals in Ci. This is because there is exactly one way to set the literals in Ci to set it to true, and the
remaining variables can take whatever values they want, and (b) indeed, any x ∈ Si can be sampled
extremely easily as well. Furthermore, if all the Si’s were disjoint, then N would simply be the sum
of the |Si|’s, and we would be done. In general, the sum is a crude upper bound as the Si’s may not
be disjoint at all. This motivates the next piece of notation.

For every assignment x ∈ {0, 1}n, define N(x) to be the number of clauses x satisfies. That is,

N(x) := |{j ∈ [m] : x ∈ Sj}|

Note that for any x, the quantity N(x) can be evaluated in O(mn) time as well: we simply go over
all clauses and count, and each clause takes O(n) time to check.

The idea of importance sampling is the following: the algorithm always samples an assignment x ∈⋃m
i=1 Si, and then corrects the estimate if N(x) is large. Here is the full algorithm. This algorithm is

due2 to Richard Karp and Michael Luby from 1983.

1: procedure ESTIMATE-#DNF(φ):
2: Set S :=

∑m
i=1 |Si|. . Crude Upper Bound

3: Sample clause Ci with probability pi :=
|Si|
|S| . . Importance Sampling

4: Sample x ∈ Si uar. . Set literals in Ci deterministically. Everything else, uar
5: Evaluate N(x) = |{j ∈ [m] : x ∈ Sj}|. . O(mn) time; N(x) ≥ 1.

6: return êst = |S|
N(x) . . Correction.

Remark: In fact, the same algorithm can be used to estimate the size of the union of a collection
of sets as long as three properties hold: (a) we know |Si| for every set in the collection, (b) we
can sample e ∈ Si for every set in the collection, and (c) for any element e, we can figure out
how many sets contain this e very quickly. This viewpoint leads to more applications than just
counting satisfying assignments to DNF formulas.

• Analysis. We first show that êst is an unbiased estimate, and then we show it doesn’t have high
variance when compared with the mean squared.

2Monte-Carlo algorithms for enumeration and reliability problems. R. M. Karp and M. Luby, Proc, 24th IEEE Symp. of Found.
of Comp. (FOCS), 1983

2



Claim 1. Exp[êst] = N

Proof. First note that the sampled x in Line 4 is a satisfying assignment of φ because it lies in at least
one of the Si’s. In particular, if we define U :=

⋃m
i=1 Si, then we never sample x /∈ U . Therefore,

when calculating the expectation of êst, we need only consider x ∈ U .

Exp[êst] =
∑
x∈U

S

N(x)
·Pr[x sampled in Line 4]

=
∑
x∈U

S

N(x)
·

∑
i∈[m]:x∈Si

Pr[x sampled in Line 4 | i sampled in Line 3]︸ ︷︷ ︸
1

|Si|

·Pr[i sampled in Line 3]︸ ︷︷ ︸
|Si|
S

=
∑
x∈U

S

N(x)
·

∑
i∈[m]:x∈Si

1

S︸ ︷︷ ︸
N(x)
S

=
∑
x∈U

1 = |U | = N

Claim 2. Var[êst] ≤ m ·Exp2[êst]

Proof. This follows rather crudely from (a) Var[êst] ≤M ·Exp[êst] whereM is the maximum value
êst can take. Note, that since N(x) ≥ 1 in Line 5, we get that êst ≤ S ≤ m ·N = mExp[êst], where
we have used another crude estimate that the sum of m cardinalities is at most m times the union.

Theorem 1. For any ε, δ, one can obtain an (ε, δ)-multiplicative approximation to N, the num-
ber of satisfying assignments to a DNF formula, with O(m

ε2
ln(1/δ))-runs of ESTIMATE-#DNF

algorithm. This leads to a total running time of O(nm2ε−2 ln(1/δ)).

Remark: The above description is from the conference version of the paper. There is a journal
versiona which includes Neal Madras as an author. They give a slightly different estimation
algorithm, which shaves off one m from the running time. This is a really nice algorithm, and I
leave this as a reading project.

aMonte-Carlo approximation algorithms for enumeration problems. R. M. Karp, M. Luby, and N. Madras, Journal
of Algorithms, 10:429–448, 1989

Learning Tidbits:

• Algorithm Design: Rejection sampling, although not ideal for #DNF, is something to be aware
of as it is very general. Importance sampling, or non-uniform sampling, is also a very powerful
tool. This is useful even when we want to do a uniform sampling over a universe to which we
don’t have direct access (see problem set for an example).

• Analysis: Sometimes, as in #DNF, to get an unbiased estimate, one needs to be mindful of what
one returns. For instance, here once we sampled x, we returned S

N(x) .

3

https://www.math.cmu.edu/~af1p/Teaching/MCC17/Papers/KLM.pdf
https://www.math.cmu.edu/~af1p/Teaching/MCC17/Papers/KLM.pdf


4


