
Finding Similar Pairs via Importance Sampling1

• A Data-Mining Application. Imagine you are a data-mining company, and you have collected “fea-
tures” about a large population. We will let [n] denote the population, and [d] denote the set of features.
For us both n and d are huge (in tens of millions, say). The “feature vector” vi associated with any
individual is the 0, 1 d-dimensional vector where vi[r] is 1 if the rth feature is present in the individual
and 0 otherwise. The overarching assumption is going to be

These feature vectors are very sparse. Typical ||vi||1 = s where s � d, n, and for now,
can be thought of as some fixed constant.

Challenge: We are interested in finding pairs of individuals whose feature vectors have a lot of in-
tersection. More precisely, for a parameter K, we wish to find all pairs (i, j) ∈ [n] × [n] such that
〈vi, vj〉 ≥ K.

To get a feel for this, assume that every individual has a feature vector where every feature is “turned
on” with probability s

d . Then, for any pair of individuals, we expect s2

d features to be in common.
Imagine s�

√
d, and so, this expected value� 1. In such a scenario, if a pair (i, j) have K ≈ d1/4

features in common, then that is something the data mining company would be interested in.

The question is how fast can we do this? The naivest approach would be to go over all pairs of
individuals, compute the dot-products of the feature vectors, and threshold. This takes O(n2d) ≈
O(n3) time. This also is quite naive since it doesn’t exploit sparsity. In today’s lecture we will see
(a) a matrix multiplication viewpoint of this problem, (b) how importance sampling helps solve this
problem, and (c) construction of an importance sampler due2 to Edith Cohen and David Lewis.

• Gram Matrix and Similar Pairs. A change of point of view is super helpful for solving this problem.
Consider the d × n matrix A where the ith column of A is the feature vector vi of the ith individual.
Then, the dot-products of the various pairs of feature vectors are captured by the n× n Gram matrix
A>A since

(A>A)ij =

d∑
r=1

A>irArj =

d∑
r=1

AriArj =

d∑
r=1

vi[r]vj [r] = 〈vi, vj〉

Therefore, the challenge above can be re-casted as find all pairs of (i, j) ∈ [n] × [n] such that
(A>A)ij ≥ K.

A parameter of interest which will drive the quality of the algorithm would be sum of entries of the
Gram matrix. Let us call this Γ(A).

Γ(A) :=

n∑
i=1

n∑
j=1

(A>A)ij =

n∑
i=1

n∑
j=1

〈vi, vj〉

1Lecture notes by Deeparnab Chakrabarty. Last modified : 15th April, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2Approximating Matrix Multiplication for Pattern Recognition Tasks. E. Cohen and D. D. Lewis, J. Algorithms 30(2): 211-252,
1999

1

Remark: Note that we are also including self-dot-products. Ideally, we would remove these but
for simplicity we just include them.

Remark: In most regimes of interest, Γ(A) is small since most 〈vi, vjrange’s are 0 since their
features don’t intersect. Indeed, the value of K one is interested in may be K := Γ(A)/H , and
there can be only H such pairs. Perhaps, we expect a “community” of c highly similar people,
and then H ≈ c2.

• Finding Similar Pairs via Importance Sampling. The algorithm to solve the challenge will be via
importance sampling. In particular, in the next bullet point we will see the proof of the following
theorem. In plain English, the sampler returns a pair of individuals proportional to the dot-product of
their feature vectors.

Theorem 1 (Cohen-Lewis Sampler). Given a non-negative d × n matrix A, one can spend
O(nnz(A) +n+d) pre-processing time and design an importance samplerA which, upon query
returns a sample (i, j) with the following property:

Pr[(i, j) sampled by A] =
(A>A)ij

Γ(A)

Here, nnz(A) is the number of non-zero entries in A.

Using the theorem, we can solve our challenge as follows.

1: procedure FINDSIMILARPAIRS(A;K):
2: . Return all pairs of columns of A with dot-product ≥ K.
3: Run Cohen-Lewis Algorithm promised in Theorem 1 to get A.
4: Sample N :=

⌈
Γ(A)
K · ln

(
Γ(A)
Kδ

)⌉
pairs from A to get R.

5: return R.

Theorem 2. For any non-negative matrixA, with probability≥ 1−δ, FINDSIMILARPAIRS(A,K)
returns all pairs i, j with 〈vi, vj〉 ≥ K.

Remark: If K = Γ(A)/H and δ were a constant, then we only need O(H lnH) many samples
: O(lnH) for every such highly similar pair.

Remark: One issue of the algorithm is that it may return pairs which are not similar, that is,
could have false positives. But this can be taken care of, and is a very instructive exercise (see
problem set). In particular, one can add multiply N by another Θ(1/ε2) and take care of the
false positives as follows : in the theorem statement we can state for every pair returned one has
〈vi, vj〉 ≥ K(1− ε).

2

Proof. The proof follows by a union bound. Let R∗ be the collection of all pairs (i, j) such that
〈vi, vj〉 ≥ K. How many pairs can there be in R∗? Since the sum of all 〈vi, vj〉’s is Γ(A), the number
of pairs where the dot-product is ≥ K is at most |R∗| ≤ Γ(A)

K . Furthermore, for every (i, j) ∈ R∗, the

probability Pr[(i, j) sampled by A] =
(A>A)ij

Γ(A) ≥ K
Γ(A) . Therefore, for this fixed (i, j) ∈ R∗,

Pr[none of the N samples are (i, j)] ≤
(

1− K

Γ(A)

)N
≤
(

1− K

Γ(A)

)Γ(A)
K
·ln
(

Γ(A)
Kδ

)

≤ e
ln
(

Γ(A)
Kδ

)
=

K

Γ(A)
· δ (1)

This is an upper bound on the probability a fixed (i, j) ∈ R∗ is missed out. Therefore, the probability
that any (i, j) ∈ R∗ is missed out is by the union bound

≤
∑

(i,j)∈R∗
Pr[none of the N samples are (i, j)] ≤ |R∗| · K

Γ(A)
· δ ≤ δ

• Cohen-Lewis Important Sampler for Non-negative Matrix Multiplication.

Upon input the d×nmatrixA, in the pre-processing step, one computes the following score for every
row (feature) : for every r ∈ [d], we compute score(r) :=

∑n
i=1Ari, that is, score(r) is the `1-norm

of the rth row. This clearly takes O(nnz(A)) time.

Given these scores, here is the description of the sampler.

1: procedure COHEN-LEWIS(A; score(r) : r ∈ [d]):. Return (i, j) with probability propor-
tional to (A>A)ij

2: Sample r ∈ [d] with probability score2(r)∑d
r=1 score2(r)

. . Proportional to square of score.

3: Sample i ∈ [n] with probability Ari
score(r) .

4: Sample j ∈ [n] with probability Arj
score(r) .

5: return (i, j).

The following lemma completes the proof of Theorem 1

Lemma 1. The probability that (i, j) is returned by COHEN-LEWIS is exactly (A>A)ij
Γ(A) .

3

Proof.

Pr[(i, j) sampled] =

d∑
r=1

Pr[(i, j) sampled | r sampled] ·Pr[r sampled]

=
d∑
r=1

Ari
score(r)

· Arj
score(r)

· score2(r)∑d
r=1 score

2(r)

=

∑d
r=1AriArj∑d
r=1 score

2(r)
=

(A>A)ij
Γ(A)

(2)

where the last equality follows from (a) the definition of (A>A), and the following observation

Γ(A) =
n∑
i=1

n∑
j=1

(A>A)ij =
n∑
i=1

n∑
j=1

d∑
r=1

AriArj =
d∑
r=1

(
n∑
i=1

Ari

) n∑
j=1

Arj

 =
d∑
r=1

score2(r)

Exercise: How much time does COHEN-LEWIS take? That is, how efficiently can we sample from
a distribution over a support of size N , whose marginals are given as input? You should be able
to show that this can be done with O(N) preprocessing time and O(logN) time per query.

Learning Tidbits:

• Algorithm Design: In a universe where elements have weights, and we want to obtain the items
with “heavy weight”, then it suffices to be able to sample items proportional to that weight.
Importance Sampling is precisely what does that.
For the case of sampling a pair proportional to (AB)ij for two non-negative matrices, Cohen-
Lewis got away without multiplying the matrices completely. This is because (AB)ij can be
written as

∑
r AirBrj . Once something can be written as a sum-of-products, one can often try to

sample an r (with the correct probability), and then sample the Arj , Brj’s. Very powerful.
• Analysis: (a) Union Bound, again. (b) Although not covered in the lecture, the second remark

after Theorem 2 can be done via another application of Chernoff bound. Highly recommended
exercise. See problem set.

4

