
Estimating the Average Degree in an Undirected Graph1

• Sublinear Graph Algorithms. In this lecture, we see an algorithm to estimate a statistic about graphs
making sub-linear number of “accesses” to it. More precisely, there is an unknown graphG = (V,E)
on n = |V | vertices, and we wish to determine the average degree davg := 2m

n of the graph where m
is the number of edges in E, in o(n) time. Note that this rules out the trivial algorithm of querying
every vertex and obtaining their degrees. Before we go into the algorithm, we need to precisely state
how we are allowed to access the graph.

• The Graph Query Model. We assume a query access model for the graph: imagine this huge graph
G is not sitting in the RAM of our computer, but rather is owned by some third party allowing us the
following three APIs to access it. This model was formalized2 by Oded Goldreich and Dana Ron.

G1. Random Access. We are allowed to access a random vertex v uniformly at random from V .

G2. Degree Queries.We are allowed to query the degree deg(v) of any vertex v.

G3. Neighbor Queries. For any vertex v, and for any integer 1 ≤ i ≤ deg(v), we can ask for the ith
neighbor of v. The order is an arbitrary but fixed order.

• A First Try. The first algorithm that probably comes to everyone’s mind is the following : sample a
random vertex v (using G1) and query its degree deg(v) (using G2). Crucially note that we haven’t
used the power of (G3) at all. Set êst := deg(v). Clearly,

Exp[êst] =
∑
v∈V

deg(v) · 1

n
= davg

Now, let’s look at the variance Var[êst] = Exp[êst
2
]−Exp2[êst]. We see that

Var[êst] ≤ Exp[êst
2
] =

∑
v∈V

deg2(v) · 1

n
≤ ∆ · davg

where ∆ is the maximum degree inG. Therefore, if we let ρ := ∆
davg

, then we get Var[êst]

Exp2[êst]
≤ ρ, which

in turn implies O(ρ·ln(1/δ)
ε2

) samples would lead to an (ε, δ)-multiplicative approximation.

The issue is that ρ of a graph can be really large, and indeed, it is really large for many real-world
graphs such as the web graph. The paradigmatic bad example is the star graph which has one center
vertex of degree n and n other leaf vertices of degree 1. Here, ρ = n, but davg ≈ 2. Thus, ρ = n

2 ,
which gives a useless bound above.

In fact the star graph tells us more. It shows that any algorithm which makes o(n) queries, will almost
surely not query the center node, and thus will only see deg(v) = 1. The reasonable estimate here
would be to set êst = 1, and this will be ≈ 50% off. Indeed, this can be formalized into the following
theorem.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 15th April, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2Approximating Average Parameters of Graphs, Random Structures & Algorithms, 32: 473–493, 2008

1

Theorem 1 (Feige3). Any algorithm with only (G1) and (G2) queries making an (2−c)-approximation
to the average degree, for any constant c, must make Ω(n) queries.

In his paper, Feige in fact proved that for any graph ≈ O(
√
n) samples of êst can be used to give a

(2 + ε)-approximation to davg. I may form a problem in the problem set exploring this. But today’s
lecture is about getting an (ε, δ)-multiplicative approximation via a very simple, but clever, algorithm
which uses the power of neighbor queries(G3). This result was first obtained by Goldreich and Ron in
their paper where they formalized the query model. This simpler analysis is essentially due4 to Talya
Eden, Dana Ron, and C. Seshadhri, although they look at a much more involved problem (which is a
great reading project).

• The Cute Idea. We know when êst is bad: it is when ρ := ∆/davg is high. Like in the star graph.
The presence of high-degree vertices leads to high variance. The main difference in the algorithm is
whenever one encounters a vertex v, then instead of setting the estimate to deg(v) right away, one
first queries a random neighbor x of v and sets the estimate to 2 deg(v) iff deg(x) > deg(v). In other
words, if the degree of v is so big that most of its neighbors have small degree, it ignores that vertex.
This way it can control the variance. And the factor 2 is precisely what keeps the estimate unbiased
because the number of edges can be counted by only considering the degree of the “lower degree”
endpoint. Let’s be precise.

There is one annoying technicality we need to take care of regarding tie-breaking. In the first read,
assume all degrees are distinct and move on. Otherwise, we assume there is a function id which
assigns each vertex a unique id in a ordered set. If two vertices have the same degree, then we use the
id to break ties.

1: procedure DEGREEESTIMATE(G):
2: Sample a random vertex v in G via (G1).
3: Query the degree deg(v) via (G2).
4: Randomly sample i ∈ {1, 2, . . . ,deg(v)} and query the ith neighbor x of v via (G3).
5: if deg(x) � deg(v) then:
6: . We say deg(x) � deg(v) if deg(x) > deg(v) OR if deg(x) = deg(v) but id(x) >

id(v).
7: Set êst = 2 deg(v).
8: else:
9: Set êst = 0.

10: return êst.

• Analysis. To analyze the algorithm, for every vertex v, let deg+(v) := |{x ∼ v : deg(x) � deg(v)}|
count the number of neighbors of v with higher degree. We establish two simple but key claims about
deg+(v) : one takes care of the expectation, and the other takes care of the variance.

Claim 1.
∑

v∈V deg+(v) = m

3On Sums of Independent Random Variables with Unbounded Variance, and Estimating the Average Degree of an Unknown
Graph, U. Feige, SIAM J. Comp., 35(4): 964–984

4 Sublinear Time Estimation of Degree Distribution Moments: The Degeneracy Connection, T. Eden, D. Ron, C. Seshadhri.
SIAM J. Discret. Math. 33(4): 2267-2285 (2019)

2

Proof. For every edge (x, y) direct it from the vertex x with deg(x) � deg(y) to the vertex y. In
this directed graph, the out-degree of every vertex v is precisely deg+(v). The claim follows from the
handshake lemma.

Claim 2. For any vertex v, deg+(v) ≤
√

2m.

Proof. Suppose M = deg+(v) is >
√

2m. Let x1, . . . , xM be the M >
√

2m neighbors of v with
deg(xi) � deg(v). We get

∑M
i=1 deg(x) ≥M deg(v) ≥M deg+(v) ≥M2 > 2m. This contradicts

that the sum of degrees of all vertices is = 2m.

Now, notice

Exp[êst] =
∑
v∈V

2 deg(v) · 1

n
· Pr
x∼v

[deg(x) � deg(v)] =
∑
v∈V

2 deg(v)

n
· deg+(v)

deg(v)
=︸︷︷︸

Claim 1

2m

n
= davg

And,

Exp[êst
2
] =

∑
v∈V

4 deg2(v)

n
· deg+(v)

deg(v)
=

4

n

∑
v∈V

deg(v) deg+(v) ≤︸︷︷︸
Claim 2

8m
√

2m

n

Using the fact that davg = 2m
n , we can rewrite this as

Var[êst] ≤ Exp[êst
2
] ≤ 8m

√
2m

n
=

2
√

2n√
m
·
(

2m

n

)2

=
2
√

2n√
m
·
(
Exp[êst]

)2
Now suppose we knew a lower bound d0 to the average degree. For instance, suppose we knew there
were no isolated vertices, then d0 = 1. Then, m ≥ nd0 giving us n√

m
≤
√

n
d0

. Thus, using the
boosting theorem we get the desired theorem.

Theorem 2. Let d0 be a known lower bound to the average degree. Using O
(√

n
d0
· ln(1/δ)

ε2

)
samples of DEGREEESTIMATE, one can obtain an (ε, δ)-multiplicative estimate to the average
degree davg.

Learning Tidbits:

• Algorithm Design: If the first unbiased estimate has high-variance, then try to see where the high-
variance arises from, and try to cull them out. This is a general and vague idea, and whether it
works depends on the problem at hand. Here it worked because the number of edges (or twice the
average degree) could be counted by summing up all degrees and dividing by 2, or only summing
up degrees in such a way that for every edge only one endpoint is counted. And in this case, the
lower degree is counted.

• Analysis: The idea that deg+(v) can’t be too large is indeed the key claim. It’s simple, but key.

3

