
Integrality Gap of the Hypergraphic Relaxation of Steiner

Trees: a short proof of a 1.55 upper bound

Deeparnab Chakrabarty

University of Pennsylvania

Jochen Könemann

University of Waterloo

David Pritchard

École Polytechnique Fédérale de Lausanne

Abstract

Recently, Byrka, Grandoni, Rothvoß and Sanità gave a 1.39-approximation for the
Steiner tree problem, using a hypergraph-based linear programming relaxation. They
also upper-bounded its integrality gap by 1.55. We describe a shorter proof of the
same integrality gap bound, by applying some of their techniques to a randomized
loss-contracting algorithm.

1 Introduction

In the Steiner tree problem, we are given an undirected graph G = (V,E) with costs c on
edges and its vertex set partitioned into terminals (denoted R ⊆ V) and Steiner vertices
(V \R). A Steiner tree is a tree spanning all of R plus any subset of V \R, and the problem
is to find a minimum-cost such tree. The Steiner tree problem is APX-hard, thus the best
we can hope for is a constant-factor approximation algorithm.

The best known ratio is obtained by Byrka, Grandoni, Rothvoß and Sanità [1]: their
randomized iterated rounding algorithm gives approximation ratio ln(4) + ǫ ≈ 1.39. The
prior best was a 1 + ln 3

2 + ǫ ≈ 1.55 ratio, via the deterministic loss-contracting algorithm of
Robins and Zelikovsky [6]. The algorithm of [1] differs from previous work in that it uses
a linear programming (LP) relaxation; the LP is based on hypergraphs, and it has several
different-looking but equivalent [2, 5] nice formulations. A second result of [1] concerns the
LP’s integrality gap, which is defined as the worst-case ratio (max over all instances) of the
optimal Steiner tree cost to the LP’s optimal value. Byrka et al. show the integrality gap
is at most 1.55, and their proof builds on the analysis of [6]. In this note we give a shorter
proof of the same bound using a simple LP-rounding algorithm.

We now describe one formulation for the hypergraphic LP. Given a set K ⊆ R of
terminals, a full component on K is a tree whose leaf set is K and whose internal nodes
are Steiner vertices. Without loss of generality, Steiner trees have no Steiner nodes of
degree 1, and under this condition they decompose in a unique edge-disjoint way into full
components; Figures 1(i) and (ii) show an example. Moreover, one can show that a set of
full components on sets {K1, . . . ,Kr} forms a Steiner tree if and only if the hypergraph
(V, {K1, . . . ,Kr}) is a hyper-spanning tree. Here, a hyper-spanning tree means there is a

1

(i) (ii)

1
2

33 2

12 2

(iii)

2

23

2

3

a

b

c

fed

a b c

fed

ba b

ed

b c

f

1
2

3 2

2

3

12

Figure 1: In (i) we show a Steiner tree; circles are terminals and squares are Steiner nodes.
In (ii) we show its decomposition into full components, and their losses in bold. In (iii) we
show the full components after loss contraction.

unique path (alternating vertex-hyperedge sequence of incidences) connecting every pair of
vertices. Let F(K) denote a minimum-cost full component for terminal set K ⊆ R, and let
CK be its cost. The hypergraphic LP is as follows:

min
∑

K

CKxK : (S)

∀∅ 6= S ⊆ R :
∑

K:K∩S 6=∅

xK(|K ∩ S| − 1) ≤ |S| − 1

∑

K

xK(|K| − 1) = |R| − 1

∀K : xK ≥ 0

The integral solutions of (S) correspond to the full component sets of Steiner trees. As
an aside, the r-restricted full component method (e.g. [4]) allows us to assume there are a
polynomial number of full components while affecting the optimal Steiner tree cost by a
1 + ǫ factor. Then, it is possible to solve (S) in polynomial time [1, 8]. Here is our goal:

Theorem 1. [1] The integrality gap of the hypergraphic LP (S) is at most 1 + (ln 3)/2 ≈
1.55.

2 Randomized Loss-Contracting Algorithm

In this section we describe the algorithm. We introduce some terminology first. The loss
of full component F(K), denoted by Loss(K), is a minimum-cost subset of F(K)’s edges
that connects the Steiner vertices to the terminals. For example, Figure 1(ii) shows the
loss of the two full components in bold. We let loss(K) denote the total cost of all edges
in Loss(K). The loss-contracted full component of K, denoted by LC(K), is obtained from
F(K) by contracting its loss edges (see Figure 1(iii) for an example).

For clarity we make two observations. First, for each K the edges of LC(K) correspond
to the edges of F(K)\Loss(K). Second, for terminals u, v, a uv edge may appear in LC(K1)
and LC(K2) for distinct full components K1 and K2; but we think of them as distinct parallel
edges.

Our randomized rounding algorithm, RLC, is shown below. We choose M to have value
at least

∑

K xK such that t = M ln 3 is integral. MST(·) denotes a minimum spanning tree
and mst its cost.

2

K

(iii)

1

3

1

3

2

a

b c
d

e f

(i)

1 6

2

3

6 1

3 33

3

(ii)

1
6

2

6
1

a b c d

e f

a,b,c,d

fe

Figure 2: In (i) we show a terminal spanning tree T in red, and a full component spanning
terminal subset K = {a, b, c, d} in black; thick edges are its loss. In (ii) we show T/K, and
DropT (K) is shown as dashed edges. In (iii) we show MST(T ∪ LC(K)).

Algorithm RLC.

1: Let T1 be a minimum spanning tree of the induced graph G[R].
2: x← Solve (S)
3: for 1 ≤ i ≤ t do

4: Sample with replacement a single component Ki as follows: with probability xK/M
it is the full component K, with probability 1−

∑

K xK/M it is the empty set
5: Ti+1 ← MST(Ti ∪ LC(Ki))
6: end for

7: Output any Steiner tree in ALG := Tt+1 ∪
⋃t

i=1 Loss(Ki).

To prove that ALG actually contains a Steiner tree, we must show all terminals are
connected. To see this, note each edge uv of Tt+1 is either a terminal-terminal edge of G[R]
in the input instance, or else uv ∈ LC(Ki) for some i and therefore a u-v path is created
when we add in Loss(Ki).

3 Analysis

In this section we prove that the tree’s expected cost is at most 1 + ln 3
2 times the optimum

value of (S). Each iteration of the main loop of algorithm RLC first samples a full component
Ki in step 4, and subsequently recomputes a minimum-cost spanning tree in the graph
obtained from adding the loss-contracted part of Ki to Ti. The new spanning tree Ti+1 is
no more expensive than Ti; some of its edges are replaced by newly added edges in LC(Ki).
Bounding the drop in cost will be the centerpiece of our analysis, and this step will in turn
be facilitated by the elegant Bridge Lemma of Byrka et al. [1]. We describe this lemma first.

We first define the drop of a full component K with respect to a terminal spanning tree
T (it is just a different name for the bridges of [1]). Let T/K be the graph obtained from
T by identifying the terminals spanned by K. Then let

DropT (K) := E(T) \E(MST(T/K)),

3

be the set of edges of T that are not contained in a minimum spanning tree of T/K, and
dropT (K) be its cost. We illustrate this in Figure 2. We state the Bridge Lemma here and
present its proof for completeness.

Lemma 1 (Bridge Lemma [1]). Given a terminal spanning tree T and a feasible solution
x to (S),

∑

K

xKdropT (K) ≥ c(T). (1)

Proof. The proof needs the following theorem [3]: given a graph H = (R,F), the extreme
points of the polytope

{z ∈ R
F
≥0 :

∑

e∈γ(S)

ze ≤ |S| − 1; ∀S ⊆ R,
∑

e∈F

ze = |R| − 1} (G)

are the indicator variables of spanning trees of H, where γ(S) ⊂ F is the set of edges
with both endpoints in S. The proof strategy is as follows. We construct a multigraph
H = (R,F) with costs c, and z ∈ R

F such that: the cost of z equals the left-hand side of
(1); z ∈ (G); and all spanning trees of H have cost at least c(T). Edmonds’ theorem then
immediately implies the lemma. In the rest of the proof we define H and supply the three
parts of this strategy.

For each full component K with xK > 0, consider the edges in DropT (K). Contracting
all edges of E(T)\DropT (K), we see that DropT (K) corresponds to edges of a spanning tree
of K. These edges are copied (with the same cost c) into the set F , and the copies are given
weight ze = xK . Using the definition of drop, one can show each e ∈ F is a maximum-cost
edge in the unique cycle of T ∪ {e}.

Having now defined F , we see

∑

e∈F

ceze =
∑

K

xKdropT (K).

Note that we introduce |K| − 1 edges for each full component K, and that, for any S ⊆ R,
at most |S ∩K|− 1 of these have both ends in S. These two observations together with the
fact that x is feasible for (S) directly imply that z is feasible for (G).

To show all spanning trees of H have cost at least c(T), it suffices to show T is an MST
of T ∪H. In turn, this follows (e.g. [7, Theorem 50.9]) from the fact that each e ∈ F is a
maximum-cost edge in the unique cycle of T ∪ {e}.

We also need two standard facts that we summarize in the following lemma. They rely
on the input costs satisfying the triangle inequality (i.e. metricity), and that internal nodes
of full components have degree at least 3, both of which hold without loss of generality.

Lemma 2. (a) The value mst(G[R]) of the initial terminal spanning tree computed by
algorithm RLC is at most twice the optimal value of (S). (b) For any full component K,
loss(K) ≤ CK/2.

Proof. For (a) we use a shortcutting argument along with Edmonds’ polytope (G) for the
graph H = G[R]. In detail, let x be an optimal solution to (S). For each K, shortcut a

4

tour of F(K) to obtain a spanning tree of K with c-cost at most twice CK (by the triangle
inequality) and add these edges to F with z-value xK . Like before, since x is feasible for
(S), z is feasible for (G), and so there is a spanning tree of G[R] whose c-cost is at most
∑

e∈F ceze ≤ 2
∑

K CKxK .
The result (b) is standard (e.g. [4, Lemma 4.1]) but we give a sketch. In the full

component, take a Steiner node x with at most one Steiner neighbour. Thus x has ≥ 2
terminal neighbours. Include the cheapest edge from x to a terminal neighbour in the loss;
then treat x as a terminal and iterate from the beginning. We end when there are no Steiner
nodes, at which point we have spent at most half of CK to construct the loss.

We are ready to prove the main theorem.

Proof of Theorem 1. Let x be an optimal solution to (S) computed in step 2, define lp∗

to be its objective value, and

loss∗ =
∑

K

xKloss(K)

its fractional loss. Our goal will be to derive upper bounds on the expected cost of tree Ti

maintained by the algorithm at the beginning of iteration i. After selecting Ki, one possible
candidate spanning tree of Ti ∪ LC(Ki) is given by the edges of Ti \ DropTi

(Ki) ∪ LC(Ki),
and thus

c(Ti+1) ≤ c(Ti)− dropTi
(Ki) + c(LC(Ki)). (2)

Let us bound the expected value of Ti+1, given any fixed Ti. Due to the distribution
from which Ki is drawn, and using (2) with linearity of expectation, conditioning on any
Ti we have

E[c(Ti+1)|Ti] ≤ c(Ti)−
1

M

∑

K

xKdropTi
(K) +

1

M

∑

K

xK(CK − loss(K)).

Applying the bridge lemma on the terminal spanning tree Ti, and using the definitions of
lp∗ and loss∗, we have

E[c(Ti+1)|Ti] ≤ (1− 1
M

)c(Ti) + (lp∗ − loss∗)/M

We can now remove the conditioning and use induction to get

E[c(Tt+1)] ≤ (1− 1
M

)tc(T1) + (lp∗ − loss∗)(1− (1− 1
M

)t)

≤ lp∗(1 + (1− 1
M

)t)− loss∗(1− (1− 1
M

)t),

where the second inequality comes from Lemma 2(a). The cost of the final Steiner tree is
at most c(ALG) ≤ c(Tt+1) +

∑t
i=1 loss(Ki). Moreover,

E[c(ALG)] = E[c(Tt+1)] + t · loss∗/M

≤ lp∗(1 + (1− 1
M

)t) + loss∗((1− 1
M

)t + t
M
− 1)

≤ lp∗
(

1

2
+

3

2

(

1−
1

M

)t

+
t

2M

)

≤ lp∗(1/2 + 3/2 · exp(−t/M) + t/2M).

5

Here the second inequality uses loss∗ ≤ lp∗/2, a weighted average of Lemma 2(b), as well
as (1 − 1

M
)t ≥ 1 − t/M ; the third inequality uses (1 − 1

M
)t ≤ exp(−t/M). The last line

explains our choice of t = M ln 3 since λ = ln 3 minimizes 1
2 + 3

2e−λ + λ
2 , with value 1 + ln 3

2 .

Thus the algorithm outputs a Steiner tree of expected cost at most (1 + ln 3
2)lp∗, which

implies the claimed upper bound of 1 + ln 3
2 on the integrality gap. �

We now discuss a variant of the result just proven. A Steiner tree instance is quasi-
bipartite if there are no Steiner-Steiner edges. For quasibipartite instances, Robins and
Zelikovsky tightened the analysis of their algorithm to show it has approximation ratio α,
where α ≈ 1.28 satisfies α = 1 + exp(−α)). Here, we’ll show an integrality gap bound of α
(the longer proof of [1] via the Robins-Zelikovsky algorithm can be similarly adapted). We
can refine Lemma 2(a) (like in [6]) to show that in quasi-bipartite instances, mst(G[R]) ≤
2(lp∗ − loss∗), which inserted into the previous argument gives

E[c(ALG)] ≤ (1− 1
M

)t · 2(lp∗ − loss∗) + (lp∗ − loss∗)(1− (1− 1
M

)t) + loss∗ · t/M

≤ exp(−t/M)(lp∗ − loss∗) + lp∗ + (t/M − 1)loss∗

= lp∗(1 + exp(−t/M)) + loss∗(t/M − 1− exp(−t/M))

and setting t = αM gives E[c(ALG)] ≤ α · lp∗, as needed. We note that in quasi-bipartite
instances the hypergraphic relaxation is equivalent [2] to the so-called bidirected cut relax-
ation thus we get an α integrality gap bound there as well.

We close with two suggestions for future work. First, 1+ ln 3
2 arose in the analysis of two

very different algorithms (RLC and Robins-Zelikovsky); a simple explanation for this fact
would be very interesting. Second, the RLC algorithm works for any large enough value of
M and in the limit as M →∞, it can be seen that RLC is equivalent to the algorithm which
picks each full component K independently with probability 1− 3−xK . The key to see this
equivalence is that for any collection L of full components, RLC picks a set of full components
disjoint from L with probability limM→∞(1 −

∑

K∈L xK/M)M ln 3 = 3−
P

K∈L
xK , the same

as the independent sampling algorithm. It would be nice to analyze this version of the
algorithm directly.

References

[1] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An improved LP-based approximation
for Steiner tree. In Proc. 42nd STOC, pages 583–592, 2010.

[2] Deeparnab Chakrabarty, Jochen Könemann, and David Pritchard. Hypergraphic LP
relaxations for Steiner trees. In Proc. 14th IPCO, pages 383–396, 2010. Full version at
arXiv:0910.0281.

[3] J. Edmonds. Matroids and the greedy algorithm. Math. Programming, 1:127–136, 1971.

[4] C. Gröpl, S. Hougardy, T. Nierhoff, and H. J. Prömel. Approximation algorithms for
the Steiner tree problem in graphs. In X. Cheng and D.Z. Du, editors, Steiner trees in
industries, pages 235–279. Kluwer Academic Publishers, Norvell, Massachusetts, 2001.

6

[5] Tobias Polzin and Siavash Vahdati Daneshmand. On Steiner trees and minimum span-
ning trees in hypergraphs. Oper. Res. Lett., 31(1):12–20, 2003.

[6] G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation.
SIAM J. Discrete Math., 19(1):122–134, 2005. Preliminary version appeared in Proc.
11th SODA, pages 770–779, 2000.

[7] A. Schrijver. Combinatorial optimization. Springer, New York, 2003.

[8] D.M. Warme. A new exact algorithm for rectilinear Steiner trees. In P.M. Pardalos and
D.-Z. Du, editors, Network Design: Connectivity and Facilities Location, pages 357–395.
American Mathematical Society, 1997. (Result therein attributed to M. Queyranne.).

7

	Introduction
	Randomized Loss-Contracting Algorithm
	Analysis

