
Estimating the number of distinct items in a stream

Scribe: Almas Abdibayev

1 Algorithm 1

Given:

1. L = dlog2me

2. Z[0 : L] - array of counters

3. h : [m]→ [n] hash function picked uniformly at random from pairwise independent
family

When item a ∈ {1, 2, ...,m} arrives

• Evaluate posa := largest j s.t. 2j divides h(a) i.e. number of trailing 0’s in binary
representation of h(a)

• Z[posa] = Z[posa] + 1

• Find largest k s.t. Z[k] > 0

• After stream ends: output d̂ = 2k

Theorem 1. with probability ≥ 5
8
, d
16
≤ d̂ ≤ 16d where d is the actual number of distinct

items. We will devote next few pages to proving above theorem.

2 Proof of Theorem 1

2.1 Some preliminaries

Definitions:

1

1. Xa,j = {
1 if 2j is the largest power of 2 which divides h(a)
0 otherwise

Observe that Xa,j is a random variable, since the choice of h is random.

2. yj =
∑

distinct aXa,j , where j is the index of the counter. This variable basically tells
us how many distinct entries in the stream will increment the value of the counter j

Observations:

1. Ph[Xa,j = 1] = 1
2j+1 (you can think of h(a) as a function that assigns a random string

of 1s and 0s of length j to a. Then each digit within it has an equally likely, indepen-
dent 1

2
chance of appearing. Note that this breaks down whenN (maximum possible

n h can hash to) is small). This observation tells that probability of incrementing the
counter j goes down exponentially with increase in j.

2. E[yj] = d
2j+1 . This also implies that 2j+1yj is an unbiased estimator of d for all j.

3. In general yj ≤ Z[j], this is true since two copies of a can map to the same bucket
and thus overincrement the counter.

4. yj = 0 ⇐⇒ Z[j] = 0
(=⇒) none of yj of distinct copies hash to position j
(⇐=) Z[j] = 0 means inequality yj ≤ 0

5.
V ar[yj] ≤ E[yj]

Proof.

(a) variance is at most the expectation for indicator variables. E.g. V ar[Xa,j] ≤
E[Xa,j]

(b) V ar[yj] =
∑

a V ar(Xa,j) ≤(by above step)
∑

aE[Xa,j]

V ar[yj] ≤by linearity of an expectation E[
∑

aXa,j] = E[yj]

This inequality is important since for an unbiased estimator X we want V ar[X]
E[X]

to be
small. Knowing that V ar[yj] is bounded by E[yj] we can conclude that variance of
estimator yj is at most 1

E[yj]
. This means that if the mean of yj is large we can obtain

small variance for our estimator.

2

2.2 Onto actual proof

Let l be s.t. 2l < d ≤ 2l+1. Think of l as the number of bits required to describe d.
We know that for all j, E[yj] = d

2j+1 , V ar[yj] ≤ E[yj]

Figure 1. Array of counters Z, cell at index l and cell at index l + c. This figure is useful
for visualization of Fact 1.

2.2.1 Fact 1

In plain English the first half of the proof says that if we go too much to the right of the
array index l we do no expect to see 1s.

Define event “Bad” := ∃ j ≥ l + c s.t. Z[j] > 0

Assert that for all c ≥ 1,
P [“Bad”] ≤ δ

where δ is a small number is to be determined below. As the name implies this event is
bad news for us, so ideally we’d want to upperbound probability of it happening.

Derivation of δ:
P [“Bad”] ≤union bound

∑
j≥l+c

P [Z[j] > 0]

We cannot really deal with Z[j]s, so we’d like to instead use yjs. Recall that yj = 0 ⇐⇒
Z[j] = 0. This also implies that Z[j] > 0 implies that yj > 0. If yj > 0 then yj is at least
one. -

P [“Bad”] =
∑
j≥l+c

P [yj ≥ 1]

Remark: Observe that as c grows we expect that P [yi ≥ 1] is smaller and smaller

P [“Bad”] ≤(using Markov property)

∑
j≥l+c

E[yj]

1

P [“Bad”] ≤
∑
j≥l+c

d

2j+1
(by definition)

3

P [“Bad”] ≤
∑
j≥l+c

2l+1

2j+1
=

1

2c

∑
j≥l+c

1

2j−(l+c)
=

1

2c
(1 +

1

2
+ ...)

P [“Bad”] ≤ 1

2c−1

2.2.2 Applying Fact 1 to a particular value of c

P [∃ j ≥ l + 4 s.t. Z[j] > 0] ≤ 1

8

Above implies that with probability ≥ 7
8
, k < l + 4 (recall that k is the value of index

that Algorithm #1 outputs)

d = 2k ≤ 2l+4 ≤ 16 · 2l ≤ 16d

2.2.3 Fact 2

In plain English the second half of the proof says that if we go too much to the left of the
index l we do expect to see 1s. Conversely, the probability that we won’t see 1s to the left
of l is small.

P [yl−c = 0] ≤ P

[
| yl−c − E[yl−c] | ≥ E[yl−c]

]
≤using Chebyshev’s inequality

V ar(yl−c)

(E[yl−c])2

P [yl−c = 0] ≤using obs.(5)
E[yl−c]

(E[yl−c])2

P [yl−c = 0] ≤ 1

E[yl−c]
=

2l−c+1

d
<(since d>2l)

2l−c+1

2l
=

1

2c−1

Thus,

P [yl−c = 0] <
1

2c−1

2.2.4 Using Fact 1 and 2 to finish the proof of Theorem 1

Recall that by observation (4) yj = 0 ⇐⇒ Z[j] = 0, which implies that P [Z[l − c] = 0] =
P [yl−c = 0]

Then P [Z[l − 3] = 0] ≤ 1
4

=⇒ with probability 3
4
, k ≥ l − 3 =⇒ d̂ = 2k > 2l−3 ≥

2l+1

24
> d

16

�

Theorem 2. with probability ≥ 5
8
, d
16
≤ d̂ ≤ 16d, where d is the actual number of distinct

items

4

Remark: Space taken by this algorithm equals O(log2 n), since there are log n counters and
each takes up log n bits. This can be reduced by only giving 1 bit for each counter.

3 Algorithm 2: better way to bound d̂

The key idea is to replace array of counters by array of sets (e.g. linked list) of bounded
by constant size (to limit the memory consumption). The main observation here is that
up until the threshold value, i.e. if Z[j] < B then Z[j] = yj .

1. L = dlog2me

2. Z[0 : L] - array of sets

3. h : [m]→ [n] hash function picked uniformly at random from pairwise independent
family

4. B - a constant bounding number of items in each set

When item a ∈ {1, 2, ...,m} arrives

• Evaluate posa := largest j s.t. 2j divides h(a) i.e. number of trailing 0’s in binary
representation of h(a)

• Z[posa] = Z[posa].append(a) if size(Z[posa]) < B

• Find smallest k s.t. |Z[k]|< B

• After stream ends: output d̂ = 2k+1 · |Z[k]|.

The following remark is what our second algorithm exploits.

Remark: Suppose Z is a random variable s.t. V ar(Z) ≤ E[Z]

P

[
|zj − E[zj]| ≥ εE[zj]

]
≤ V arzj
ε2(E[zj]2)

≤ 1

ε2
1

E[zj]

∴ ifE[zj] >
10

ε2
, this prob ≤ 1

10

The takeaway from this is that large mean and bounded variance imply good ”concentra-
tion” of points. This in turn implies that the random variable is fairly close to the mean (within
some approximation factor).

Question 1. Is d̂ an unbiased estimator?

No, since k has to be fixed. In our case k is a random variable (due to the fact we are
hashing). d̂ is an underestimator (due to the bound B).

5

3.1 Theorem for algorithm 2

Theorem 3. with prob ≥ 2
3
, d

1+ε
≤ d̂ ≤ (1 + ε)d

Redefine BAD := (d̂− d) > εd
We want to upperbound P [BAD] = P [2k+1 · yk /∈ (1± ε)d]

Remark: For any fixed j, E[2j+1yj] = d i.e. E[yj] = d
2j+1 and V ar[yj] ≤ E[yj].

∴ P

[
|yj − d

2j+1 | ≥ ε d
2j+1

]
≤ 1

ε2
1

E[yj]
= 1

ε2
2j+1

d

Let l be s.t. 10
ε2
≤ d

2l+1 (equivalent toE[yl])
≤ 20

ε2
. Why is this important? For this particular l

the probability that E[yl] will be more than half the bucket size is small. This implies that
bucket will fit it all of the items for this particular l with high probability.

Let’s go back to P [BAD].

P [BAD] = P [2k+1 · yk /∈ (1± ε)d] = P

[
|yk −

d

2k+1
|> ε

d

2k+1

]

P [BAD] =decoupling trick=
L∑
j=0

P

[
(k = j) and |yj −

d

2j+1
|> ε

d

2j+1

]

Remark: We cannot fix k (we cannot apply the previous remark) but we can sum over all
possibilities to ”fix” it. This only works for ”small” js. For large js this is irrelevant since the
probability of those buckets to have values decays exponentially.

P [BAD] =
l∑

j=0

P

[
(k = j) and |yj−

d

2j+1
|> ε

d

2j+1

]
+

L∑
j=l+1

P

[
(k = j) and |yj−

d

2j+1
|> ε

d

2j+1

]

P [BAD] ≤
l∑

j=0

P

[
|yj −

d

2j+1
|> ε

d

2j+1

]
+

L∑
j=l+1

P

[
(k = j)

]

P [BAD] ≤
l∑

j=0

1

ε2
2j+1

d
+ P

[
(k > l)

]

P [BAD] ≤
l∑

j=0

1

ε2
2j+1

d
+ P

[
(k > l)

]

6

P [BAD] ≤ 1

ε2d

l∑
j=0

2j+1+P

[
(k ≥ B)

]
(if k > l =⇒ |Z[l]|> B =⇒ |yl|> B, but if not yl = Z[l] ≤ B)

P [BAD] ≤ 2l+2

ε2d

P [BAD] ≤ 1

10

2l+2

2l+1

P [BAD] ≤ 1

5

Remark: you need to keep counting until B = 100
ε2

Remark: Space taken by this algorithm is O(log
2 n
ε2

) bits

7

	Algorithm 1
	Proof of Theorem 1
	Some preliminaries
	Onto actual proof
	Fact 1
	Applying Fact 1 to a particular value of c
	Fact 2
	Using Fact 1 and 2 to finish the proof of Theorem 1

	Algorithm 2: better way to bound
	Theorem for algorithm 2

