
Approximation Algorithms: Problem Set 9

Due Date: April 18

Solutions need to be submitted by email to eo249iisc@gmail.com. We prefer latexed solution. Before

giving the solutions, you should write how many problems you have attempted and how many you think you

have solved. Starred problems are optional and (possibly) more fun.

Exercise 1. Let X be a symmetric n-by-n real matrix. Prove that the following are equivalent:

(a) X is positive semidefinite.

(b) a>Xa ≥ 0 for all a ∈ Rn.

(c) Cholesky factorization: There exists a matrix U ∈ Rn×n such that M = U>U .

Exercise 2. In this exercise, you will work out an algorithm for Cholesky factorization which uses
O(n3) arithmetic operations. Assume the real RAM model of computation, where exact arithmetic
operations on real numbers (such as computation of square roots, trig functions, random numbers,
etc.) take constant time.

Let M ∈ Rn×n be symmetric. The algorithm is recursive. Clearly, when n = 1, Cholesky
factorization is just computing a square root. For n > 1, suppose:

M =

(
α q>

q N

)
where α ∈ R, q ∈ Rn−1 and N ∈ R(n−1)×(n−1).

(a) Argue that α ≥ 0 and that N is positive semidefinite.

(b) Suppose α = 0. Show that q is the zero vector. Assuming the problem can be solved for
matrices of size n− 1, show how to Cholesky factorize M .

(c) Suppose α > 0. Prove that:

M =

( √
α 0>

1√
α
q In−1

)(
1 0>

0 N − 1
αqq

>

)( √
α 1√

α
q>

0 In−1

)

(d) If α > 0, show that N − 1
αqq

> is positive semidefinite.
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(e) If N − 1
αqq

> is recursively factorized as V >V , show that

U =

( √
α 1√

α
q>

0 V

)

satisfies M = U>U .

Exercise 3. Recall that in class, we obtained the following SDP relaxation for the MAX-2SAT
problem:

max
∑

0≤i≤j≤n
(ai,j(1 + ui · uj) + bi,j(1− ui · uj))

subject to ui · ui = 1 0 ≤ i ≤ n
ui ∈ Rn+1 0 ≤ i ≤ n

Use the Goemans-Williamson rounding algorithm to show that E[Alg] ≥ 0.878Opt, where Alg is the
value of the solution generated by the rounding algorithm.

Exercise 4. (a) Let p(x) be a univariate polynomial of degree d with real coefficients. We say
p is a sum of squares if p(x) = q1(x)2 + q2(x)2 + ·qm(x)2 for some polynomials q1, ..., qm
(univariate with real coefficients). Formulate the problem of deciding whether p is a sum of
squares as a SDP.

(b) A polynomial p(x) is non-negative if p(x) ≥ 0 for all x ∈ R. Show that p is non-negative
if and only if it is a sum of squares. Hint: First prove when p is a quadratic. Handle the
general case by factoring p into quadratics.

(c) Given p(x), formulate the problem of finding its global minimum min{p(t) | t ∈ R} as the
solution of a semidefinite program (by using parts (a) and (b)).

(d∗) Extend part (a) to multivariate polynomials.

Note: Part (b) of this problem doesn’t extend to multivariate polynomials. For example, it
can be verified that the Motzkin polynomial p(x, y) = 1 + x2y2(x2 + y2 − 3) is non-negative but is
not a sum of squares. However, for many families of multivariate polynomials, this approach is a
powerful algorithm for finding the global minimum.
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