CS 31: Algorithms (Spring 2019): Lecture 7
Date: 10th April, 2019
Topic: Dynamic Programming 2: The Knapsack Problem
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

1 Knapsack Problem.

KNAPSACK

Input: n items; item j has profit p; and weight w;. A knapsack of capacity B. All of
these are positive integers.

Output: Find the subset S C {1,2,...,n} which maximizes } ;s p; and “fits” in the
knapsack; that is, Zjes w; < B.

Asin the Subset Sum case, let us look at an instance of Knapsack ((p1, w1), ..., (pn, w,); B)
and consider an optimal solution S C {1,...,n} for the problem. Can we break this up
into solutions to smaller instances of the same problem?

Just like in subset sum, let us ask whether the last element n is in the subset or not. If
it is not, then S in fact is also the optimal solution for the smaller instance
((p1,w1), ..., (Pn_1,wn_1); B). If not, then a better solution for this smaller instance would
be a better solution for the original instance.

If the last element is in .S, and here is the simple but crucial observation, then S — n
must be the optimal solution for the smaller instance ((p1, w1), . . ., (Pn—1, Wn—1); B—w,). In
other words, the placement of the last item only reduces the size of the knapsack available
to the other items, but doesn’t affect the problem in any other way:.

In summary, if the solution S doesn’t contain the n item, then S itself is an optimal so-
lution to the smaller instance ((py, w), ..., (Pn—1, Wn—1); B); otherwise, S — n is an optimal
solution to the smaller instance ((p1,w1), ..., (Pn_1,Wn_1); B — w,). Good, we have made
progress — now we will formalize all these things using the 7-step method described last
time.

To make things precise, for optimization problems like knapsack (unlike decision
problems like subset sum) which try to maximize/minimize something, it helps to spell
out the candidate/feasible solutions of an instance. To that end, we use the definition

Cand(m, b) : all possible subsets of {1,2,...,m} whose total weight is < b.
We will write a recurrence for F'(m, b) which is the maximum profit subset in Cand(m, b).

1. Definition:
Forany 0 <m <nand 0 < b < B, let Cand(m, b) be all subsets S C {1,...,m} which
fit in a knapsack of capacity b, that is, > ;g w; <.

1

Define F'(m,b) = maxXgecand(m,b) Zjes Dj-

We are interested in F'(n, B).

2. Base Cases:
F(0,b) =0forall 0 < b < B; an empty set gives profit 0.
F(m,0) = 0forall 0 <m < n; an empty set gives profit 0.

3. Recursive Formulation:
Forallm > 1,b > 1:

F(m,b) =max (F\(m—1,b), F(m —1,b —wy,) + pm)

4. English Explanation / Formal Proof:
Let’s consider the optimal way of picking items of type in subset {1,2,...,m}.
Case 1: This optimal set may not contain item m, in which case we should have
F(m,b) = F(m — 1,b).
Case 2: This contains item m. In that case, there is a way of picking items from
{1,2,...,m—1} giving value F'(m, b) — p,,, which fit in a knapsack of capacity b —w,y,.
Conversely, the optimal solution to F/(m — 1,b) is also a solution to F(m,b). And,
the solution to F'(m — 1,b — w,,) can be appended with the last item.

Formal Proof:

(<): Let S be the subset in Cand(m, b) such that p(S) = F(m,b).

Case 1: S doesn’t contain item m. Then S € Cand(m — 1,b) and so F'(m —1,b) >
p(S) = F(m,b), since F'(m — 1,b) is the maximum over all sets in Cand(m — 1,).
Case 2: S contains item m. Then S'\ j lies in Cand(m — 1,b — w,,) and p(S'\ j) =
p(S) — pm = F(m,b) — p. Thus, F(m — 1,b — w,,) > F(m,b) — py,, since
F(m —1,b — w,,) is the maximum over all sets in Cand(m — 1,0 — w,).

(>): Let S be the subset in Cand(m — 1,b) such that p(S) := > . .opi = F(m — 1,b).
Observe S also lies in Cand(m,b). Thus, F(m,b) > p(S) = F(m — 1,b) since
F(m,b) is the maximum over all sets in Cand(m, b).

Similarly, let S be the subset in Cand(m — 1,b — w,,) such that p(S) = F(m —
1,b — wy,). Form S” = S + m. Note that S € Cand(m,b) since w(S’) < b, and
p(S") = F(m —1,b — wy,) + pm. Thus, F(m,b) > F(m — 1,b — wy,) + pm.

5. Pseudocode for computing F[n, B] and recovery pseudocode:

1: procedure KNAPSACK(B,(p1, w1), - , (P, wy)):
2: > Returns the subset of items of type 1, . . ., n which fits in knapsack of capacity
B and gives maximum profit.

3: Allocate space F[0 : n,0 : B]

4: F[0,b] <~ 0 forall 0 < b < B> Base Case

5: F[m,0] =0 forall 0 < m < n. > Base Case

6: for1 <m <ndo:

7 for1 <b < Bdo:

8: if b — w,, > 0 then :

9: Flm,b] + max(F[m — 1,b], Flm — 1,b — wy,] + pm)
10: > Note Flm — 1,b — wy,] is set before F'[m, b] in this ordering.
11: else: > Implicitly, in this case F[m — 1,b — wy,] = —o0
12: Flm,b] + F[m — 1,]

13: > F[n, B] now contains the value of the optimal subset
14: > Below we show the recovery pseudocode
15: m<n; b+ B; S+ 0.

16: > Invariant:) . qw; +b < Band F[m, bl + 3 ;.sp; = F[n, B
17: while m > 0 do:

18: if Fim,b] = F|m — 1,] then:

19: m<+<m—1

20: else: > We know F[m,b] = F[m,b — wy,] + pm.
21: S+ S+m

22: b+ b—w,,.

23: m<+<m—1

24: return S

Note that in the recovery the invariant always holds and at the end since F'[0, k] = 0,
we have p(S) = Fn, B].

6. Running time and space The above pseudocode take ©(nB) time and space where n
is the number of items.

	Knapsack Problem.

