
CS 31: Algorithms (Spring 2019): Lecture 8
Date: 11th April, 2019

Topic: Dynamic Programming 3: Manipulating Strings
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

In this lecture, we will look at two or three “string” problems. The input to these problems
will be strings of the form s[1 : n] where each s[i] will be from some alphabet Σ; the
alphabet could be {0, 1}, the Roman alphabet, or {A,C,G, T}, etc, etc.

1 Longest Common Subsequence (LCS)

Given a string s[1 : n] a subsequence is a subset of the various “coordinates” in the same
order as the string. Formally, a length k subsequence is a string σ = (s[i1]◦ s[i2]◦ . . .◦ s[ik])
where 1 ≤ i1 < i2 < · · · < ik ≤ n. For example, if the string is algorithms, of length 10,
then lot is a subsequence with i1 = 2, i2 = 4, and i3 = 7. Similarly, grim is a subsequence.
But, list is not a subsequence.

Remark: Note that the i1, i2, . . . , ik need not be contiguous; if they are indeed contiguous,
then the subsequence is called a substring. The number of substrings are at most O(n2); the
number of subsequences can be O(2n).

Given two strings s[1 : m] and t[1 : n], a string σ is a common subsequence if it appears
in both as a subsequence. Formally, if |σ| = k then there exists (i1 < . . . < ik) and
(j1 < . . . < jk), such that s[ir] = t[jr] for all 1 ≤ r ≤ k. Once again, the locations
don’t need to be the same, that is, ir needn’t be jr. For example, if s = algorithms and
t = computers, then the string σ = oms is a subsequence with (i1, i2, i3) = (4, 9, 10) and
(j1, j2, j3) = (2, 3, 9).

LONGEST COMMON SUBSEQUENCE
Input: Two strings s[1 : m] and t[1 : n].
Output: Return a longest common subsequence between s and t.
Size: m,n.

As remarked before the problem definition, the number of subsequences can be expo-
nentially many and brute-forcing over them is not a great idea. Instead, we imagine the
longest common subsequence σ∗ of s and t. And as we did for subset-sum and knapsack,
we consider the “last” element of σ∗.

Suppose |σ∗| = k, and for the time-being suppose we just want this value k. We
will recover the solution later as we did for Subset Sum and Knapsack. Let us try to
(informally) observe how |σ∗| can be argued about as arising out of solutions to smaller
instances of the same problem.
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• Case 1: σ∗[k] 6= s[m] and σ∗[k] 6= t[n]. This happens, for example, when s is apple

and t is apply and σ∗ is appl. We observe that σ∗ should be the LCS of s[1 : m − 1]
and t[1 : n− 1].

• Case 2: σ∗[k] = s[m] and σ∗[k] 6= t[n]. This happens, for example, when s is appal

and t is apply and σ∗ is appl. We observe that σ∗ should be the LCS of s[1 : m] and
t[1 : n− 1].

• Case 3: σ∗[k] 6= s[m] and σ∗[k] = t[n]. This is absolutely symmetric to Case 2: in this
case σ∗ is the LCS of s[1 : m− 1] and t[1 : n].

• Case 4: σ∗[k] = s[m] and σ∗[k] = t[n]. This happens, for example, if s is appal and
t is appeal and σ∗ is appl. We observe that σ∗[1 : k − 1] should then be the LCS of
s[1 : m− 1] and t[1 : n− 1], and then we append the l to this answer.

Therefore, we see that if some one had given us the solution to the following 3 smaller
instances of LCS namely the LCS between (s[1 : m−1], t[1 : n−1]), and (s[1 : m], t[1 : n−1]),
and (s[1 : m − 1], t[1 : n]), then we can get the LCS of (s[1 : m], t[1 : n]). We observe that
the lengths of the input strings drop, and in particular, any one of them could drop. We
extrapolate from here that the smaller instances that we would eventually need will be of
the LCS of s[1 : i] and s[1 : j] for 1 ≤ i ≤ m and 1 ≤ i ≤ m; we should store these solutions
in a 2-dimensional array T [i, j]. Finally, the base case: when i = 0 or j = 0, the length of
the LCS will also be 0.

We have all the ingredients for the dynamic programming solution which we now
provide below.

1. Definition: For any 0 ≤ i ≤ m and 0 ≤ j ≤ n, let us use LCS(i, j) to be the length
of the longest common subsequence of s[1 : i] and t[1 : j]. We are interested in
LCS(m,n).

As in the case of knapsack, it is useful to introduce the notation of Cand(i, j). Let
Cand(i, j) to be the set of all common subsequences of the strings s[1 : i] and t[1 : j].
With this notation, we get

LCS(i, j) = max
σ∈Cand(i,j)

|σ|

2. Base Cases: LCS(0, j) = 0 for all 0 ≤ j ≤ n and LCS(i, 0) = 0 for all 0 ≤ i ≤ m.

3. Recursive Formulation: Let 1i,j be the indicator variable defined as

1i,j =

{
1 if s[i] = t[j]

0 otherwise

For all i > 0, j > 0:

LCS[i, j] = max( LCS[i− 1, j], LCS[i, j − 1], LCS[i− 1, j − 1] + 1i,j )
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4. Formal Proof:

(≥): Let σ be the subsequence in Cand(i− 1, j) of length LCS(i− 1, j). Since Cand(i−
1, j) ⊆ Cand(i, j), we get LCS(i, j) ≥ LCS(i − 1, j) since the former maximizes
over a larger set. Similarly, LCS(i, j) ≥ LCS(i, j − 1). Finally, we note if σ′ ∈
Cand(i − 1, j − 1) and s[i] = t[j], then σ′ ◦ s[i] is a common subsequence in
Cand(i, j). This implies, LCS(i, j) ≥ LCS(i− 1, j − 1) + 1i,j .

(≤): Let σ∗ be the subsequence in Cand(i, j) of length LCS(i, j). Let k = |σ∗|. Now
repeat the arguments in the 4 cases above.

– Case 1: σ∗[k] 6= s[i] and σ∗[k] 6= t[j]. Then σ∗ ∈ Cand(i− 1, j − 1). Therefore,
LCS(i, j) ≤ LCS(i− 1, j − 1) = LCS(i− 1, j − 1) + 1i,j .

– Case 2: σ∗[k] = s[i] and σ∗[k] 6= t[j]. Then σ∗ ∈ Cand(i, j − 1) and so
LCS(i, j) ≤ LCS(i, j − 1).

– Case 3: σ∗[k] 6= s[i] and σ∗[k] = t[j]. Then σ∗ ∈ Cand(i − 1, j) and so
LCS(i, j) ≤ LCS(i− 1, j).

– Case 4: σ∗[k] = s[m] and σ∗[k] = t[n]. Then σ∗−σ[k] ∈ Cand(i−1, j−1), and
1i,j = 1. Therefore, LCS(i, j) − 1 ≤ LCS(i − 1, j − 1), implying LCS(i, j) ≤
LCS(i− 1, j − 1) + 1i,j .

In each case, LCS(i, j) is less than one of the three things in the RHS.

5. Pseudocode for computing LCS[m,n] and recovery pseudocode:
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1: procedure LCS(s[1 : m], t[1 : n]):
2: . Returns the longest common subsequence of s and t.
3: Allocate space L[0 : m, 0 : n] . L[i, j] will contain the length of the LCS of

s[1 : i] and t[1 : j].
4: L[0, j] ← 0 for all 0 ≤ j ≤ n and L[i, 0] ← 0 for all 0 ≤ i ≤ m. . Base

Cases.
5: for 1 ≤ i ≤ m do:
6: for 1 ≤ j ≤ n do:
7: L[i, j]← max( L[i− 1, j], L[i, j − 1], L[i− 1, j − 1] + 1i,j )

8: . L[m,n] now contains the value of the longest common subsequence
9: . Below we show the recovery pseudocode

10: i← m; j ← n; σ = [].
11: . Invariant: |σ|+ L[i, j] = L[m,n]
12: while i > 0 and j > 0 do:
13: if L[i, j] = L[i− 1, j − 1] + 1i,j then:
14: if 1i,j = 1 then:
15: Append s[i] to the front of σ.
16: i← i− 1; j ← j − 1
17: else if L[i, j] = L[i− 1, j] then:
18: i← i− 1
19: else: . We must have that L[i, j] = L[i, j − 1]

20: j ← j − 1

21: return σ

Note that in the recovery the invariant always holds and at the end since L[0, j] = 0
or L[i, 0] = 0, we have |σ| = L[m,n].

6. Running time and space The above pseudocode take O(mn) time and space.

Theorem 1. The LONGEST COMMON SUBSEQUENCE between two strings can be found in
O(nm) time and space.

2 Edit Distance

Remark: Unfortunately, we didn’t have time to go over this in class. We just remarked how
you would use the same idea as in LCS, almost word to word, to compute the edit-distance.
Please try yourself first, and then try to solve the remaining.

This is a similar problem to the longest common subsequence problem. Given two
strings s[1 : m] and t[1 : n], the edit distance is notion of distance between s and t defined
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using 3 operations. The first is the insert operation – ins(s, i, c) inserts character c between
s[i] and s[i + 1], thus making s longer; del(t, j) deletes t[j] from t making it shorter; and
sub(s, i, c) replaces s[i] with the character c keeping the length the same. Each operation
costs 1 unit.

The edit distance between s[1 : m] and t[1 : n] is the minimum number of operations
above that are required to convert s into t. This is denoted as ED(s, t).

For example, if s is apple and t is banana, then ED(s, t) = 5 since one can go from
apple→ bapple→ banple→ banale→ banane→ banana. The operations are ins(s, 1, b),
sub(s, 3, n), sub(s, 4, a), sub(s, 5, n), and sub(s, 6, e).

EDIT DISTANCE
Input: Two strings s[1 : m] and t[1 : n].
Output: Return ED(s, t).
Size: m,n.

b
Exercise:

• Prove that ED(s, t) = ED(t, s).
• Prove that for any three strings s, t, u, we have ED(s, u) ≤ ED(s, t) + ED(t, u).

The edit distance can be computed by almost the same algorithm as above for LCS.

1. Definition: For any 0 ≤ i ≤ m and 0 ≤ j ≤ n, let us use ED(i, j) to be the edit distance
between the strings s[1 : i] and t[1 : j]. We are interested in ED(m,n).

What should Cand(i, j) be? Since the edit distance is the smallest number of “string
operations” (ins/del/sub), let’s define Cand(i, j) as the all possible sequences π of
string operations which take s[1 : i] to t[1 : j]. Armed with this notation, we get

ED(i, j) = min
π∈Cand(i,j)

|π|

2. Base Cases:

LCS(0, j) = j for all 0 ≤ j ≤ n and LCS(i, 0) = i for all 0 ≤ i ≤ m. There is only one
way to go from an empty string to a string of length i or j – keep inserting.

3. Recursive Formulation: As before, let 1i,j be the indicator variable defined as

1i,j =

{
1 if s[i] = t[j]

0 otherwise

For all i > 0, j > 0:

ED[i, j] = min( 1 + ED[i− 1, j], 1 + ED[i, j − 1], (1− 1i,j) + ED[i− 1, j − 1] )
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4. Formal Proof:

(≤): Let π be the sequence of operations in Cand(i− 1, j) of length ED(i− 1, j). Con-
sider the sequence of operations π′ = del(s, s[i], i) ◦ π, which first deletes the last
entry of s[1 : i] togo to s[1 : i− 1], and then follows the sequence of operations
in π to get to s[1 : j]. Thus, π′ ⊆ Cand(i, j) and |π′| = 1 + |π| = 1 + ED(i, j).
Therefore, we get ED(i, j) ≤ 1 + ED(i− 1, j) since the former is minπ∈Cand(i,j) |π|.
Similarly, one can show ED(i, j) ≤ 1 + ED(i, j − 1); the only difference is that
we would ins(s[1 : j − 1], s[j], j) at the end of doing π. (You should try writing
this yourself).
Finally, suppose π was a sequence of operations that took s[1 : i−1] to t[1 : j−1]
and whose length was ED(i− 1, j − 1). If s[i] = t[j], then π also takes s[1 : i] to
t[1 : j]. If s[i] 6= t[j], then consider the sequence π′ = sub(s, t[j], i) ◦ π; this takes
s[1 : i] to t[i : j]. Note that |π′| = (1− 1i,j) + |π| = (1− 1i,j) + ED(i− 1, j − 1).

(≥): Let π∗ be the sequence of operations which took s[1 : i] to t[1 : j].
Look at all operations of π∗which don’t involve the position s[i]. The remaining
operations must be taking s[1 : i − 1] to t[1 : j]. And after that, the position
s[i] must be deleted in π∗. Thus, there is a sequence π of operations of length
|π| = |π∗|−1 = ED(i, j)−1 which takes s[1 : i−1] to t[1 : j]. Thus, ED(i−1, j) ≤
ED(i, j)− 1. Similarly arguing, we get ED(i, j − 1) ≤ ED(i, j)− 1.
Now, look at all the operations of π∗ which don’t involve s[i] or t[j]. They must
take the string s[1 : i − 1] to t[1 : j − 1]. In particular, there is a sequence of
operations π with |π| ≤ |π∗| which lies in Cand(i − 1, j − 1). Thus, ED(i, j) ≥
ED(i − 1, j − 1). Furthermore, if s[i] 6= t[j], then need to be substituted after
s[1 : i− 1] is taken to t[1 : j − 1]. Thus, ED(i, j) ≥ ED(i− 1, j − 1) + (1− 1i,j).

5. Pseudocode for computing ED[m,n].

1: procedure ED(s[1 : m], t[1 : n]):
2: . Returns the edit distance between s and t.
3: Allocate space E[0 : m, 0 : n] . E[i, j] will contain the edit distance between

s[1 : i] and t[1 : j].
4: E[0, j] ← j for all 0 ≤ j ≤ n and E[i, 0] ← i for all 0 ≤ i ≤ m. . Base

Cases.
5: for 1 ≤ i ≤ m do:
6: for 1 ≤ j ≤ n do:
7: E[i, j]← min( E[i− 1, j], E[i, j − 1], E[i− 1, j − 1] + (1− 1i,j) )

8: return E[m,n].

6. Running time and space The above pseudocode take O(mn) time and space.
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Theorem 2. The EDIT DISTANCE between two strings can be found in O(nm) time and
space.

b
Exercise: Write the recovery pseudocode, that is, which gives the sequence of operations which
take s[1 : n] to t[1 : m]. To really appreciate it, you do need to code it and see how to get from
apple to banana.

7


	Longest Common Subsequence (LCS)
	Edit Distance

