
CS 31: Algorithms (Spring 2019): Lecture 9
Date: 23rd April, 2019

Topic: Randomized Algorithms 1: Frievald’s Algorithm, Quicksort
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please notify errors on Piazza/by email to deeparnab@dartmouth.edu.

Randomized algorithms are algorithms which have an extra resource available to
them: they have access to a stream of independent fair random coins. More pertinently,
we assume the algorithm has access to a subroutine rand(), and each time the algorithm
calls it, it obtains a bit which is 0 or a 1, equally likely. Furthermore any two calls to
rand() produces answers which are independent of each other.

There are two ways in which randomness can affect the performance of traditional
algorithms. These two ways lead to two classes of randomized algorithms.

Monte Carlo Algorithms. A randomized algorithm A on an input I could run in some
fixed, deterministic time TA(I), but return a solution A(I) which could be wrong. However,
the probability that the algorithm is wrong (the probability taken over the randomness
generated by the algorithm’s various calls to rand()) is “small”. Formally, for our lectures
let’s assert that

Pr[A(I) is wrong] ≤ 2−100

These are called Monte Carlo randomized algorithms.

Las Vegas Algorithms. A randomized algorithm A on input I could always return the
correct solution A(I), however, the running time TA(I) is a random variable. In particular,
if one is unlucky the algorithm may just run for ever. For these algorithms, what is more
of interest is the expected running time. In particular, on input I we care for Exp[TA(I)].
Indeed, the runtime as a function of the size is defined as

TA(n) := max
I:|I|≤n

Exp[TA(I)]

In this lecture, we will see examples of both types of randomized algorithms.

1 Checking Matrix Multiplication: Frievald’s Algorthm

CHECKING MATRIX MULTIPLICATION
Input: Three n× n matrices A,B,C.
Output: Decide whether A ·B = C or not?
Size: n.

1

Recall that the product of two n × n matrices A,B is another n × n matrix C defined
as follows

Cij =
n∑

k=1

AikBkj, ∀1 ≤ i, j ≤ n

Naively, two matrices need n3 time to be multiplied; each product as above needs O(n)
multiplications, and there are n2 pairs (i, j). If you have been looking at the supplemental
problems, then you may have seen a faster algorithm to multiply two matrices using
Divide-and-Conquer. The current record is O(n2.377) time algorithms discovered in 2015.
So the obvious algorithm of “multiply A and B and check whether it is equal to C” runs
in at best O(n2.377) time.

We now see an extremely simple Monte-Carlo algorithm with one-sided error which
runs in quadratic time.

The main observation is that if A · B = C, then for any n-dimensional vector r =
(r1, . . . , rn), we must have (A · B) · r = C · r. Observe that calculating both the LHS and
RHS takes quadratic time. To see this for the LHS, we need to use the associativity of
multiplication: (A ·B) · r = A · (B · r), and (B · r) is also an n-dimensional vector.

On the other hand, even when A·B 6= C, there may be some r for which (A·B)·r = C ·r.
For instance, suppose M = A · B, and C ≡ M except C[1, 1] 6= M [1, 1]. Then for any r
with r1 = 0, we will indeed have (A ·B) · r = C · r. Check this.

On the other hand, as we show below, if r is chosen randomly, more precisely, if ri ∈
{0, 1} is chosen uniformly at random, then the algorithm will “catch the discrepancy”
with high probability.

1: procedure FRIEVALD(A,B,C):
2: . Checks whether A ·B = C or not.
3: for i = 1 to k do:
4: Generate n independent random variables ri ∈ {0, 1} calling rand().
5: Let r← (r1, . . . , rn).
6: Compute u← (A · (B · r)).
7: Compute v ← C · r.
8: return REJECT if u 6= v.
9: return ACCEPT . None of the k tries above reject.

Remark: The running time of FRIEVALD is O(kn2). So for a constant k, it runs in O(n2)
time.

Theorem 1. The Algorithm FRIEVALD returns a wrong answer with probability ≤ 1
2k

.

Proof. Let us first check that if A · B = C, then the algorithm never makes an error (no
matter what rand() returns.) This is because for any r we have (A ·B) ·r = C ·r. Therefore,
FRIEVALD will return ACCEPT. The interesting part is the other direction.

2

Now, suppose A · B 6= C. Let D := A · B − C; D must have at least one non-zero
entry, and in particular, at least one non-zero row. Suppose this row w. Now observe that
each for-loop of FRIEVALD rejects is the probability Pr[D · r 6= 0]. In particular, this is at
least Pr[w · r 6= 0]. The next claim shows that this probability is at least 1/2; therefore,
the probability none of the k for-loops rejects, since we are each time using independent
random coins, is ≥ 1− 1/2k.

Claim 1. Let w be any non-zero n-dimensional vector. Let r be a random n-dimensional
vector with ri ∈ {0, 1}with probability 1/2. Then,

Pr[w · r = 0] ≤ 1/2

Proof. Since w 6= 0, we know one of its coordinates is 6= 0. Without loss of generality let
us assume it is w1. Then, let’s write w · r as

w · r =
n∑

i=1

wiri = (w1r1) +
n∑

i=2

wiri

Let X be the random variable w1r1 and let Y =
∑n

i=2wiri. The crucial thing to note is that
X and Y are independent random variable. Let Z be the random variable w · r. Thus,
Z = X + Y .

Pr[Z = 0] = Pr[Z = 0|Y = 0] ·Pr[Y = 0] + Pr[Z = 0 | Y 6= 0] ·Pr[Y 6= 0]

≤ Pr[X = 0|Y = 0] ·Pr[Y = 0] + Pr[X 6= 0 | Y 6= 0] ·Pr[Y 6= 0]

= Pr[X = 0] ·Pr[Y = 0] + Pr[X 6= 0] · (1−Pr[Y = 0])

= 1/2, since w1 6= 0, we have Pr[X = 0] = Pr[r1 = 0].

To explain the inequality above, note that Z = X + Y . Therefore, given Y = 0 we get
Z = 0 if and only if X = 0. Thus, Pr[Z = 0|Y = 0] = Pr[X = 0|Y = 0]. On the other
hand, given Y 6= 0, we get Z = 0 if and only if X = −Y . At the very least, we need (but it
doesn’t suffice) X 6= 0. Thus, Pr[Z = 0|Y 6= 0] ≤ Pr[X = 0|Y 6= 0].

2 QuickSort

Next, we look at QuickSort, an algorithm which many of you may have seen in CS 1. It is
another sorting algorithm which is randomized, always returns the sorted list, but whose
running time is a random variable whose expectation we will bound.

The main idea behind QuickSort is pivoting; using a certain element of the array to
break the problem into two and then recursing on the two sides. A very Divide-and-
Conquer idea.

3

More precisely, let q = A[i] be an arbitrary1 element of the list. Given q, the list A[1 : n]
can be divided into 3 lists: A1 := {A[i] : A[i] < q}, A2 = {A[i] : A[i] = q}, and A3 = {A[i] :
A[i] > q}. Note this takes one scan of the list, and thus O(n) time.

1: procedure PIVOT(A, q):
2: . A is list of length n. Returns two lists A1, A2, A3 as desired
3: Initially A1, A2, A3 are null lists.
4: for i = 1 to n do:
5: if A[i] < q then:
6: Append A[i] to A1

7: else if A[i] = q then:
8: Append A[i] to A2

9: else:
10: Append A[i] to A3.
11: return (A1, A2, A3)

Now, suppose we recursively sort A1, A3 and suppose B1 and B3 are the sorted ver-
sions. Then note, the sorted order of A is precisely [B1, A2, B3], that is the array B1 fol-
lowed by the q’s followed by B2. Done!

Let’s try to write a recurrence inequality and try to solve it then. Suppose the length of
array A1 is n1 and length of array A3 is n3. Note that n1 + n3 < n− 1. To divide, we spend
O(n) time (this is the pivoting step), and to conquer, we only need O(1) time. Thus, we
get

T (n) ≤ T (n1) + T (n3) + O(n) (1)

If, say, both n1 and n3 were Θ(n), then it is not too hard to show that the solution to the
above is O(n log n) (for instance, if n1 = n/3 and n3 = 2n/3, this was left as an exercise
long back). However, what if we are unlucky, and we get n1 = 0 and n3 = n−1. Then, the
solution to the above is T (n) = O(n2). Not great, since the naive sorting algorithm takes
O(n2) time.

The idea of QuickSort is to choose the pivot q randomly! Sure, we could be unlucky
and choose a split of n1, n3 which is not balanced. But it seems we would be devilishly
unlucky for this to repeat over-and-over again! Indeed, with this simple random choice,
we get an expected O(n log n) behavior.

1It will be good to know the difference between arbitrary and random. When we say arbitrary, we don’t
care which element it is and it may be the worst element for whatever purpose. When we say random,
we usually mean uniformly at random among the choices available. In particular for this example, there is
indeed a big difference as you will see

4

1: procedure QUICKSORT(A):
2: . A is a list of length n. Returns a sorted order B
3: Choose i ∈ {1, 2, . . . , n} at random.
4: q ← A[i].
5: (A1, A2, A3)←PIVOT(A, q).
6: B1 ←QUICKSORT(A1).
7: B3 ←QUICKSORT(A3).
8: return B1 appended with A2 appended with B3.

Theorem 2. Given any list A[1 : n], the algorithm QUICKSORT sorts it in O(n log n) ex-
pected time.

Proof. Let us revisit what we need to argue about. Even when we fix a list A, the time
taken by the algorithm is a random variable T (A). The expected running time is Exp[T (A)].
What we are interested in is T (n) = maxA:|A|=nExp[T (A)].

There are two ways to prove this. One is by writing the “expectation version” of (1)
and then doing the math. More precisely, since q is random, the numbers n1 and n3 are
random variables and so are T (n1) and T (n3). Note that T (n1) itself is an expectation; the
fact that n1 is random makes T (n1) a random variable. We know what the distribution of
the n1’s and the n3’s are, which allows us to finally argue about T (n), and we can indeed
write a recurrence formula for T (n). You should try writing this, and you will realize the
recurrence inequality you get is not fun to solve.

Rather, what we are going to see is a beautiful application of linearity of expectation.
We start by making some observations. First is that the total time taken by the algo-

rithm is dominated by the PIVOT subroutine, which itself is dominated by the number of
comparisons it makes of the form “Is A[i] < q?”. Second observe that if two entries of the
array A[i] and A[j] are ever compared, they are never compared again. Thus, the running
time of QUICKSORT can be upper bounded by the number of comparisons the algorithm
makes.

Now suppose B[1 : n] is the correct sorted order of A[1 : n]. Define the indicator
random variable Xij , for i < j, which is 1 if the numbers B[i] and B[j] are ever compared in
the QuickSort algorithm. We don’t just mean the first iteration; we mean anywhere in the
full run. From the above two observations, we get

T (n) = Exp

[
Θ

(
n∑

i=1

n∑
j=i+1

Xij

)]
By Linearity of expectation (and the Θ function), we get

T (n) = Θ

(
n∑

i=1

n∑
j=i+1

Exp[Xij]

)
(2)

5

So, all that remains is to argue about Exp[Xij]. Now comes the third and final observation.
The numbers S = {B[i], B[i + 1], . . . , B[j]} are initially in A (surely). Subsequently, either
we choose a q /∈ S in which case either all of S goes to A1 or all of S goes to A3. Otherwise,
we choose q ∈ S, and in that case in subsequent recursive calls B[i] and B[j] are separated.
Therefore, the only time B[i] and B[j] are compared if the first time q lands in S it must
be either B[i] or B[j]. If it is not, then B[i] and B[j] are never compared.

Put differently, we get

Pr[Xij = 1] = Pr[q ∈ {i, j} | q ∈ S]

But q is chosen equally likely among the entries of an array. Thus, given that it falls in S,
the probability it is either i or j is precisely 2/|S| = 2/(j− i+1). If this bothers you, do the
calculation using the definition. If n′ is the length of the array the first time we get q ∈ S,
the the numerator of the conditional probability is 2/n′ while the denominator is |S|/n′.

Putting this in (2), we get

T (n) = Θ

(
n∑

i=1

n∑
j=i+1

2

j − i + 1

)

Changing some variables, we get

T (n) = Θ

(
n∑

i=1

n−i−1∑
s=2

2

s

)
≤ Θ

(
n∑

i=1

n∑
s=1

1

s

)

Now we use the fact that
∑n

s=1 1/s = Θ(log n). This gives T (n) = Θ(n log n).

6

	Checking Matrix Multiplication: Frievald's Algorthm
	QuickSort

