CS 30: Discrete Math in CS (Winter 2019): Lecture 24

Date: 20th February, 2019 (Wednesday) Topic: Probability: Random Variables, Expectation Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Random Variable.

Given a random experiment with outcomes Ω , a *real valued random variable* X defined over this experiment is a mapping $X : \Omega \to \mathbb{R}$. An *integer valued random variable* X is a mapping from $X : \Omega \to \mathbb{Z}$.

Examples:

- We toss a fair coin. *X*(heads) = 0 and *X*(tails) = 1. This is a {0,1}-random variable, or a Boolean random variable. Also called a *Bernoulli* random variable.
- We roll a fair die. *X* takes the value on the face of the die.
- We roll *two* fair dice. X takes the value of the sum. In this case, X = Y + Z where Y, Z are random variables of the kind from the previous bullet point.
- Given any event \mathcal{E} , there is an associated random variable called the *indicator random* variable denoted as $\mathbf{1}_{\mathcal{E}}$, where $\mathbf{1}_{\mathcal{E}}(\omega) = 1$ if $\omega \in \mathcal{E}$, and 0 otherwise.

2. Events associated with random variables.

Given a random variable *X*, we can associate many events and ask for their probabilities. For instance, we can ask $\mathbf{Pr}[X = x]$. More precisely, this is a shorthand for saying $\sum_{\omega \in \Omega: X(\omega)=x} \mathbf{Pr}[\omega]$.

Similarly, $\mathbf{Pr}[X \ge k]$ is a shorthand for saying $\sum_{\omega \in \Omega: X(\omega) > k} \mathbf{Pr}[\omega]$.

3. Expectation of a Random Variable.

Theorem 1. The expectation of a random variable *X* is defined to be

$$\mathbf{Exp}[X] = \sum_{\omega \in \Omega} X(\omega) \cdot \mathbf{Pr}[\omega] = \sum_{x \in \mathsf{range}(x)} x \cdot \mathbf{Pr}[X = x]$$

Remark: The expectation is therefore often thought of as an inner-product (aka dot-product) of two vectors. These vectors have $|\Omega|$ dimensions. One vector is $(X(\omega) : \omega \in \Omega)$, and the other is $(\mathbf{Pr}[\omega] : \omega \in \Omega)$. This dot-product view is often useful (although, sadly, we may not see its ramifications in this course).

Examples:

• We toss a fair coin. X(heads) = 0 and X(tails) = 1. This is a $\{0, 1\}$ -random variable, or a Boolean random variable. Also called a Bernoulli random variable.

$$\mathbf{Exp}[X] = 0 \cdot \mathbf{Pr}[X=0] + 1 \cdot \mathbf{Pr}[X=1] = 1/2$$

Indeed, if the coin were not fair, and the probability that tails would come with probability p, then $\mathbf{Exp}[X] = p$.

• We roll a fair die. X takes the value on the face of the die.

$$\mathbf{Exp}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

• We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y, Z are random variables of the kind from the previous bullet point.

This is requires a little work. The range of X is $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. We can calculate the probabilities for each (remember, it is not uniform), and then do the calculation.

Exercise: *Please do the calculation.*

We get the answer 7. Did you?

• Given any event \mathcal{E} , there is an associated random variable called the indicator random variable denoted as $\mathbf{1}_{\mathcal{E}}$, where $\mathbf{1}_{\mathcal{E}}(\omega) = 1$ if $\omega \in \mathcal{E}$, and 0 otherwise.

$$\mathbf{Exp}[\mathbf{1}_{\mathcal{E}}] = 0 \cdot \mathbf{Pr}[\neg \mathcal{E}] + 1 \cdot \mathbf{Pr}[\mathcal{E}] = \mathbf{Pr}[\mathcal{E}]$$

This is quite important. Why? Because it turns a probability calculation (the RHS) into an expectation calculation. As we show below, calculating expectations is often easier than calculating probabilities.

Þ

Ŀ

Exercise: Suppose you have a fair coin. Construct the following random variable Z whose range is \mathbb{N} . You keep tossing the fair coin till you get a heads. Z is the number of times you have tossed the coin. What is $\mathbf{Exp}[Z]$?

4. Multiplication by a scalar. If *X* is a random variable, and *c* is a "scalar" (a constant), then $Z = c \cdot X$ is another random variable. $\mathbf{Exp}[c \cdot X] = c \cdot \mathbf{Exp}[X]$.

Exercise: *Prove this.*

5. **Linearity of Expectation.** This is one of the most powerful equations in all of probability. Literally. It states the following. It literally has a four line proof.

Theorem 2. For any two random variables *X* and *Y*, let Z := X + Y. Then,

$$\mathbf{Exp}[Z] = \mathbf{Exp}[X] + \mathbf{Exp}[Y]$$

ß

Proof.

$$\begin{split} \mathbf{Exp}[Z] &= \sum_{\omega \in \Omega} Z(\omega) \mathbf{Pr}[\omega] & \text{Definition of Expectation} \\ &= \sum_{\omega \in \Omega} \left(X(\omega) + Y(\omega) \right) \mathbf{Pr}[\omega] & \text{Definition of } Z \\ &= \sum_{\omega \in \Omega} X(\omega) \mathbf{Pr}[\omega] + \sum_{\omega \in \Omega} Y(\omega) \cdot \mathbf{Pr}[\omega] & \text{Distributivity} \\ &= \mathbf{Exp}[X] + \mathbf{Exp}[Y] & \text{Definition of Expectation} \end{split}$$

As a corollary, we get:

Theorem 3. For any *k* random variables X_1, X_2, \ldots, X_k ,

$$\mathbf{Exp}\left[\sum_{i=1}^{k} X_i\right] = \sum_{i=1}^{k} \mathbf{Exp}[X_i]$$

Examples of applications.

- (a) We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y, Z are random variables of the kind from the previous bullet point.
 Tailor-made application. Exp[Y] = Exp[Z] = 3.5, the expected value of a single roll of a die. Thus, Exp[X] = Exp[Y + Z] = 7 by linearity of expectation.
- (b) We have a biased coin which lands heads with probability p. We toss it 100 times. Let X be the number of heads we see. What is $\mathbf{Exp}[X]$?

Remark: Try doing this the "first-principle" way. That is, for each $0 \le k \le 100$, figure out the probability $\mathbf{Pr}[X = k]$ (that is, the probability we get exactly k heads), and then $\sup \sum_{k=0}^{100} k \cdot \mathbf{Pr}[X = k]$. Please try it; feel the sweat needed to do this. It will make you appreciate the next three lines more!

Define new random variables; define X_i to take the value 1 if the *i*th toss is heads, and 0 otherwise. Note, $X = X_1 + X_2 + \cdots + X_{100}$. Note, $\mathbf{Exp}[X_i] = p$ (it is a Bernoulli random variable). Thus, linearity of expectation gives $\mathbf{Exp}[X] = 100p$.

(c) *n* people checked in their hats, but on their way out, were handed back hats randomly. What is the expected number of people who get their correct hats?
Define X_i to be 1 if the *i*th person gets his or her back correctly. What is Exp[X_i]? It is 1/n; it is the probability that σ(i) = i for a random ordering σ. Let Z = ∑_{i=1}ⁿ X_i. Note, Z is the number of people who get their correct hats. By linearity of expectation, Exp[Z] = 1.

(d) In a party of n people there are some pairs of people who are friends, and some pairs who are not. In all there are m pairs of friends. The host randomly divides the party by taking each person and sending them left or right at the toss of a fair coin. How many friends are sent apart (in expectation)?

Remark: A graph is randomly split into two. How many edges, in expectation, have endpoints in different parts?

For each pair of friends (u, v), define X_{uv} which takes the value 1 if u and v are split, and takes the value 0 if u and v are not split. The probability u and v are split is 1/2(either u is sent left, v is sent right, or vice-versa). Thus, $\mathbf{Exp}[X_{uv}] = 1/2$. Define $Z = \sum_{(u,v): \text{ friends }} X_{uv}$; Z is the number of friends sent apart. $\mathbf{Exp}[Z] = \sum_{(u,v): \text{ friends }} \mathbf{Exp}[X_{uv}] = m/2$. In expectation, half the friendships are sundered apart.

(e) In an ordering σ of (1, 2, ..., n), an inversion is a pair i < j such that $\sigma(i) > \sigma(j)$. How many inversions, in expectation, are there in a random permutation?

Let σ be a random permutation. Define the *indicator random variable* X_{ij} for i < j, which takes the value 1 if $\sigma(i) > \sigma(j)$, and 0 otherwise. Note that $\Pr[X_{ij} = 1] = \frac{1}{2}$; there are equally many orderings with $\sigma(i) > \sigma(j)$ as $\sigma(i) < \sigma(j)$. Now note that $Z = \sum_{i=1}^{n} \sum_{j>i} X_{ij}$ is the number of inversions in σ . Thus, $\exp[Z] = \sum_{i=1}^{n} \sum_{j>n} \exp[X_{ij}] = \frac{1}{2} \cdot \frac{n(n-1)}{2}$.