
CS 30: Discrete Math in CS (Winter 2019): Lecture 24
Date: 20th February, 2019 (Wednesday)

Topic: Probability: Random Variables, Expectation
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.

Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

1. Random Variable.

Given a random experiment with outcomes Ω, a real valued random variable X defined over
this experiment is a mapping X : Ω → R. An integer valued random variable X is a mapping
from X : Ω→ Z.

Examples:

• We toss a fair coin. X(heads) = 0 and X(tails) = 1. This is a {0, 1}-random variable, or
a Boolean random variable. Also called a Bernoulli random variable.

• We roll a fair die. X takes the value on the face of the die.

• We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z
are random variables of the kind from the previous bullet point.

• Given any event E , there is an associated random variable called the indicator random
variable denoted as 1E , where 1E(ω) = 1 if ω ∈ E , and 0 otherwise.

2. Events associated with random variables.

Given a random variable X , we can associate many events and ask for their probabili-
ties. For instance, we can ask Pr[X = x]. More precisely, this is a shorthand for saying∑

ω∈Ω:X(ω)=xPr[ω].

Similarly, Pr[X ≥ k] is a shorthand for saying
∑

ω∈Ω:X(ω)≥k Pr[ω].

3. Expectation of a Random Variable.

Theorem 1. The expectation of a random variable X is defined to be

Exp[X] =
∑
ω∈Ω

X(ω) ·Pr[ω] =
∑

x∈range(x)

x ·Pr[X = x]

Remark: The expectation is therefore often thought of as an inner-product (aka dot-product) of
two vectors. These vectors have |Ω| dimensions. One vector is (X(ω) : ω ∈ Ω), and the other
is (Pr[ω] : ω ∈ Ω). This dot-product view is often useful (although, sadly, we may not see its
ramifications in this course).

Examples:
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• We toss a fair coin. X(heads) = 0 and X(tails) = 1. This is a {0, 1}-random variable, or a
Boolean random variable. Also called a Bernoulli random variable.

Exp[X] = 0 ·Pr[X = 0] + 1 ·Pr[X = 1] = 1/2

Indeed, if the coin were not fair, and the probability that tails would come with proba-
bility p, then Exp[X] = p.

• We roll a fair die. X takes the value on the face of the die.

Exp[X] = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5

• We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z are
random variables of the kind from the previous bullet point.
This is requires a little work. The range of X is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. We can
calculate the probabilities for each (remember, it is not uniform), and then do the calcu-
lation. b

Exercise: Please do the calculation.

We get the answer 7. Did you?

• Given any event E , there is an associated random variable called the indicator random vari-
able denoted as 1E , where 1E(ω) = 1 if ω ∈ E , and 0 otherwise.

Exp[1E ] = 0 ·Pr[¬E ] + 1 ·Pr[E ] = Pr[E ]

This is quite important. Why? Because it turns a probability calculation (the RHS) into
an expectation calculation. As we show below, calculating expectations is often easier
than calculating probabilities. b

Exercise: Suppose you have a fair coin. Construct the following random variable Z whose range
is N. You keep tossing the fair coin till you get a heads. Z is the number of times you have tossed
the coin. What is Exp[Z]?

4. Multiplication by a scalar. If X is a random variable, and c is a “scalar” (a constant), then
Z = c ·X is another random variable. Exp[c ·X] = c ·Exp[X]. b

Exercise: Prove this.

5. Linearity of Expectation. This is one of the most powerful equations in all of probability.
Literally. It states the following. It literally has a four line proof.

Theorem 2. For any two random variables X and Y , let Z := X + Y . Then,

Exp[Z] = Exp[X] + Exp[Y ]
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Proof.

Exp[Z] =
∑
ω∈Ω

Z(ω)Pr[ω] Definition of Expectation

=
∑
ω∈Ω

(X(ω) + Y (ω))Pr[ω] Definition of Z

=
∑
ω∈Ω

X(ω)Pr[ω] +
∑
ω∈Ω

Y (ω) ·Pr[ω] Distributivity

= Exp[X] + Exp[Y ] Definition of Expectation

As a corollary, we get:

Theorem 3. For any k random variables X1, X2, . . . , Xk,

Exp

[
k∑

i=1

Xi

]
=

k∑
i=1

Exp[Xi]

Examples of applications.

(a) We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z are
random variables of the kind from the previous bullet point.
Tailor-made application. Exp[Y ] = Exp[Z] = 3.5, the expected value of a single roll of
a die. Thus, Exp[X] = Exp[Y + Z] = 7 by linearity of expectation.

(b) We have a biased coin which lands heads with probability p. We toss it 100 times. Let X be the
number of heads we see. What is Exp[X]?

Remark: Try doing this the “first-principle” way. That is, for each 0 ≤ k ≤ 100, figure
out the probability Pr[X = k] (that is, the probability we get exactly k heads), and then
sum

∑100
k=0 k · Pr[X = k]. Please try it; feel the sweat needed to do this. It will make you

appreciate the next three lines more!

Define new random variables; define Xi to take the value 1 if the ith toss is heads, and 0
otherwise. Note, X = X1 +X2 + · · ·+X100. Note, Exp[Xi] = p (it is a Bernoulli random
variable). Thus, linearity of expectation gives Exp[X] = 100p.

(c) n people checked in their hats, but on their way out, were handed back hats randomly. What is
the expected number of people who get their correct hats?
Define Xi to be 1 if the ith person gets his or her back correctly. What is Exp[Xi]? It
is 1/n; it is the probability that σ(i) = i for a random ordering σ. Let Z =

∑n
i=1Xi.

Note, Z is the number of people who get their correct hats. By linearity of expectation,
Exp[Z] = 1.
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(d) In a party of n people there are some pairs of people who are friends, and some pairs who are not.
In all there are m pairs of friends. The host randomly divides the party by taking each person
and sending them left or right at the toss of a fair coin. How many friends are sent apart (in
expectation)?

Remark: A graph is randomly split into two. How many edges, in expectation, have
endpoints in different parts?

For each pair of friends (u, v), define Xuv which takes the value 1 if u and v are split,
and takes the value 0 if u and v are not split. The probability u and v are split is 1/2
(either u is sent left, v is sent right, or vice-versa). Thus, Exp[Xuv] = 1/2. Define Z =∑

(u,v): friends Xuv; Z is the number of friends sent apart. Exp[Z] =
∑

(u,v): friends Exp[Xuv] =
m/2. In expectation, half the friendships are sundered apart.

(e) In an ordering σ of (1, 2, . . . , n), an inversion is a pair i < j such that σ(i) > σ(j). How many
inversions, in expectation, are there in a random permutation?
Let σ be a random permutation. Define the indicator random variable Xij for i < j,
which takes the value 1 if σ(i) > σ(j), and 0 otherwise. Note that Pr[Xij = 1] = 1

2 ;
there are equally many orderings with σ(i) > σ(j) as σ(i) < σ(j). Now note that Z =∑n

i=1

∑
j>iXij is the number of inversions in σ. Thus, Exp[Z] =

∑n
i=1

∑
j>nExp[Xij ] =

1
2 ·

n(n−1)
2 .
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