
Probability: Conditional Independence1

• Conditional Independence.
Consider the following two events. There lies in front of you a fair coin. Alice tosses it. Then Bob
tosses the same coin. Let A be the event that Alice gets heads. Let B be the event that Bob gets
heads. Are these independent? Even before doing the calculation, you would say sure. Alice’s toss
shouldn’t hinder Bob’s toss. Indeed, both Pr[A] = Pr[B] = 1/2 and Pr[A ∩ B] = 1/4. These are
independent.

Exercise: Check thatA and B are independent even when the coin is not fair, but instead it came
heads all the time, or came heads 90% of the time.

Now consider a slightly different experiment. In a box lies two coins. One is fair. The other is biased
and tosses heads with probability 0.75. You pick up a coin from these two at random and place it
in front of you. Alice tosses it. Bob tosses the same coin. A and B are same as above. Are these
independent events?

To see that they are not before doing any calculations, take the experiment to an extreme. Suppose
both the coins in the box were super un-fair; suppose one of them came tails all the time, and the other
came heads all the time. Then note, if A occurs, then B occurs with 100% probability (if Alice sees
a head, then she has for sure picked the all-heads coin, and so Bob will for sure see a heads as he is
tossing the same coin). On the other hand, none of the events individually is a sure-shot. Thus, A and
B aren’t independent.

However, there is a third random event here. It is the event E which is whether I pick the fair coin or
not. I claim that A and B are independent if we condition on E . That is, I claim

Pr[A ∩ B | E ] = Pr[A | E ] ·Pr[B | E ]

Indeed, if I tell you that E has occurred, then the problem becomes the one asked before; given a fair
coin tossed by Alice and Bob, the events that they see heads is independent. The events A and B are
therefore independent conditioned on the event E .

Remark: Conditional Independence is a tricky concept. Be wary. For example:

– “A and B are independent events. Then they are also conditionally independent on any
event E .”
False. Example: Roll two fair dice. A is the event that the first die is odd. B is the event that
the second die is odd. These are independent events. Now consider the event E that the sum
of the two dice is odd.. What is Pr[A | E ]? You can now calculate this – it is 1/2 as well.
Similarly, Pr[B | E ] = 1/2. However, what is Pr[A∩B | E ]? Yep, it’s zero. Independence
can be lost upon conditioning.

– “A and B are conditionally independent given E . Then they are conditionally independent
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given ¬E as well.”
False. In its generality this is false, although in the above example of coins, it is true. To
see why it is false, we can consider again the setting of rolling two dice. However, this time
A occurs if the first die lands 1, and B occurs if the second die lands 1. E is the event that
the sum is 2; ¬E is the event that the sum is not 2.
Note: Pr[A | E ] = Pr[B | E ] = Pr[A ∩ B | E ] = 1. Thus, A and B are conditionally
independent given E . On the other hand, Pr[A | ¬E ] is something non-zero (figure out
what it is!), and Pr[B | ¬E ] is something non-zero. But, Pr[A ∩ B | ¬E ] is certainly zero.
Conditional Independence can be lost upon the negation of the event we are conditioning
on.

• Revisiting the “Two-Tests” example. Suppose A is your initial belief you have an affliction (based
on, say, statistics). There is a test which has a false negative rate of fn and a false positive rate of fp.
That is, if you have the affliction, the probability the test says you don’t is fn, and if you do not have
the affliction, the probability the test says you do is fp. You take the test once and see a positive. You
take the test again and you see a positive. What are the chances you do have the affliction. This is a
problem we solved using Bayes law. And we saw there were “two ways” to do this.

Say P1 is the event the first test comes positive. P2 is the event the second test comes positive. After
one test, the probability we do have the affliction is

Pr[A | P1] =
Pr[P1 | A] ·Pr[A]

Pr[P1]
(1)

and, the probability we do have an affliction after two tests coming positive is

Pr[A | P1,P2] =
Pr[P1,P2 | A] ·Pr[A]

Pr[P1,P2]
(2)

Now note, crucially, that P1 and P2 are not independent. Much like the example above of the coin
being pulled out of a bag in the previous bullet point. However, they are conditionally independent on
both A and ¬A. That is,

Pr[P1,P2 | A] = Pr[P1 | A] ·Pr[P2 | A] and Pr[P1,P2 | ¬A] = Pr[P1 | ¬A] ·Pr[P2 | ¬A]

In particular, this implies

Pr[P2 | A,P1] = Pr[P2 | A] and Pr[P2 | ¬A,P1] = Pr[P2 | ¬A]

Where are we getting at? Well, now we can “simplify” (2) as

Pr[A | P1,P2] =
Pr[P1,P2 | A] ·Pr[A]

Pr[P1,P2]

=
(Pr[P2 | A] ·Pr[P1 | A]) ·Pr[A]

Pr[P2 | P1] ·Pr[P1]
Cond. Indep.

=
Pr[P2 | A]
Pr[P2 | P1]

·
(
Pr[P1 | A] ·Pr[A]

Pr[P1]

)
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Note that the paranthesized expression is precisely, by (1), Pr[A | P1]. Thus, we get

Pr[A | P1,P2] =
Pr[P2 | A] ·Pr[A | P1]

Pr[P2 | P1]
(3)

Now, by the law of total probability,

Pr[P2 | P1] = Pr[P2 | A,P1] ·Pr[A | P1] +Pr[P2 | ¬A,P1] ·Pr[¬A | P1]

and by conditional independence, we get

Pr[P2 | P1] = Pr[P2 | A] ·Pr[A | P1] +Pr[P2 | ¬A] · (1−Pr[A | P1])

Substituting in (3), we get

Pr[A | P1,P2] =
Pr[P2 | A] ·Pr[A | P1]

Pr[P2 | A] ·Pr[A | P1] +Pr[P2 | ¬A] · (1−Pr[A | P1])

which is exactly what you would have if onlyP2 occurred with the prior Pr[A] changed to Pr[A | P1].

• An example with Bayes rule and Conditional Independence

Spam Filters. We are trying to train a (Bayesian) Spam Filter. We start with a corpus with 2000 spam
messages and 1000 real messages. We observe that the word “Congratulations” appears in 100 spam
messages, and 10 real messages. We also observe that the word “Account” appears in 160 spam
messages and 20 real messages. Assume you believe that any incoming email is possible spam with
probability 40%. What is the probability an incoming message is spam given it contains the word
“Congratulations”? What is the probability an incoming message is spam given it contains the word
“account”? What is the probability that the incoming message is spam, given it contains both words
“account” and “congratulations”? If we set a threshold of 90% to mark spam or not, in which of
these cases would we mark spam.

Consider an incoming email. Let S be the event that it is spam. The assumption we are making is that
Pr[S] = 0.4.

Let A be the event that the word “account” appears in the email. Let C be the event that the word
“congratulations” appears in the email. From the data, we deduce that in a random spam message, the
chances of seeing “congratulations” is 100

2000 = 0.05. Thus, we conclude

Pr[C | S] = 0.05

Similarly, we conclude,

Pr[C | ¬S] = 10

1000
= 0.01

since ¬S implies a ‘real’ message. Also, we conclude

Pr[A | S] = 160

2000
= 0.08

and
Pr[A | ¬S] = 20

1000
= 0.02
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Now, we can apply Bayes rule to get

Pr[S | A] = Pr[A | S] ·Pr[S]
Pr[A | S] ·Pr[S] +Pr[A | ¬S] ·Pr[¬S]

=
(0.08) · (0.4)

(0.08)(0.4) + (0.02)(0.6)

which computes to 0.727. That is, if we see the word “account” in an incoming mail, we would
believe the probability it is spam is around 72.7%. Thus, out spam-filter won’t mark it spam.

Similarly, for “congratulations”, we get

Pr[S | C] = Pr[C | S] ·Pr[S]
Pr[C | S] ·Pr[S] +Pr[C | ¬S] ·Pr[¬S]

=
(0.05) · (0.4)

(0.05)(0.4) + (0.01)(0.6)

which computes to around 0.769. That is, if we see the word “account” in an incoming mail, we
would believe the probability it is spam is around 77%. The spam-filter won’t mark this spam.

How do we solve the next question – when we see both “congratulations” and “account”. Well, we
need to find

Pr[S | A ∩ C] = Pr[A ∩ C | S] ·Pr[S]
Pr[A ∩ C]

(4)

We don’t know how to calculate Pr[A ∩ C | S]. This is where (another) assumption, called the
Naive Bayes Assumption is made. In the setting of Spam Filters, it states that the events A and
S are conditionally independent on both spam (that is S) and real messages. What it says that it
does recognize that the distribution of these words (“congratulations”, “account”) may not behave
independently on the whole email corpus; but if we focus our attention to the classes at hand, then it
does. Again, this is an assumption, which is actually made out there many time in the real world.

Pr[A∩C | S] = Pr[A | S] ·Pr[C | S], Pr[A∩C | ¬S] = Pr[A | ¬S] ·Pr[C | ¬S] (Naive Bayes)

Once we make it, then our calculations can start again. We get:

Pr[A ∩ C] = Pr[S] ·Pr[A ∩ C | S] +Pr[¬S] ·Pr[A ∩ C | ¬S]

and the RHS, with the Naive Bayes assumption, becomes

Pr[A ∩ C] = Pr[S] ·Pr[A | S] ·Pr[C | S] +Pr[¬S] ·Pr[A | ¬S] ·Pr[C | ¬S]

Substituting in the Bayes rule formula (4), we get

Pr[S | A ∩ C] = Pr[A | S] ·Pr[C | S] ·Pr[S]
Pr[S] ·Pr[A | S] ·Pr[C | S] +Pr[¬S] ·Pr[A | ¬S] ·Pr[C | ¬S]

which evaluates to

Pr[S | A ∩ C] = (0.05)(0.08)(0.4)

(0.05)(0.08)(0.4) + (0.02)(0.01)(0.6)
= 0.9302

4


