
Probability: Variance1

• Variance and Standard Deviation.

The expectation of a random variable is some sort of an “average behavior” of a random variable.
However, the true value of a random variable may be no where close to the expectation. For instance,
consider a random variable which takes the value 10000 with probability 1/2, and −10000 with
probability 1/2. What is Exp[X]? Yes, it is 0. Thus, there is significant deviation of X from its
expectation.

The variance and standard deviation try to capture this deviation. In particular, the variance of a
random variable is the expected value of the square of the deviation.

Let X be a random variable. The variance of X is defined to be

Var[X] := Exp
[
(X −Exp[X])2

]
That is, if we define another random variableD := (X−Exp[X])2, then Var[X] is the expected
value of this new deviation random variable D.

The standard deviation σ(X) is defined to be
√
Var(X).

Theorem 1. Var[X] = Exp[X2]− (Exp[X])2.

Proof.

Var[X] = Exp[(X −Exp[X])2] = Exp[X2 − 2X Exp[X] + (Exp[X])2]

Then, we apply linearity of expectation to get

Var[X] = Exp[X2]− 2Exp[X] ·Exp[X] + (Exp[X])2 = Exp[X2]− (Exp[X])2

A useful corollary (something we observed in the last lecture notes):

Theorem 2. For any random variable Exp[X2] ≥ (Exp[X])2.

Proof. Var[X] is the expected value of (X −Exp[X])2. That is, Var[X] is the expected value of a
random variable which is always non-negative. In particular, Var[X] is non-negative. Which in turn
means Exp[X2]− (Exp[X])2 ≥ 0. Rearranging implies the corollary.
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Examples

– Roll of a die. Let X be the roll of a fair 6-sided die. We know that Exp[X] = 3.5. To calculate
the variance, we can use the deviation D := (X − Exp[X])2 = (X − 3.5)2. Usinhg this, we
get

Var[X] = Exp[D] =
1

6

(
(2.5)2 + (1.5)2 + (0.5)2 + (0.5)2 + (1.5)2 + (2.5)2

)
=

35

12

– Toss of a biased coin. LetX be a Bernoulli random variable taking value 1 if a coin tosses heads,
and 0 otherwise. Suppose the probability of heads was p. Recall, Exp[X] = p. Also note since
X is a indicator random variable, X2 = X . Thus, Exp[X2] = p as well. We can calculate the
variance as

Var[X] = Exp[X2]− (Exp[X])2 = p− p2 = p(1− p)

– Indicator Random Variable. Using the above toss of a biased coin example, we see that for any
event E , the variance of the indicator random variable is

Var[1E ] = Pr[E ] · (1−Pr[E ]) = Pr[E ] ·Pr[¬E ]

Theorem 3. If X is a random variable, and c is a “scalar” (a constant), then Z = c ·X is another
random variable. Var[c ·X] = c2 ·Var[X].

Proof.

Var[c ·X] = Exp[c2X2]− (Exp[cX])2 = c2Exp[X2]− c2 (Exp[X])2 = c·Var[X]

The next theorem is a linearity of variance result for independent random variables.

Theorem 4. For any two independent random variables X and Y , let Z := X + Y . Then,

Var[Z] = Var[X] +Var[Y ]

Proof. By definition of variance, we get

Var[X + Y ] = Exp[(X + Y )2]− (Exp[X] +Exp[Y ])2 (1)

Now, we expand the first term in the RHS to get

Exp[(X + Y )2] = Exp[X2 + 2XY + Y 2]

= Exp[X2] + 2Exp[XY ] +Exp[Y 2] Linearity of Expectation

= Exp[X2] + 2Exp[X]Exp[Y ] +Exp[Y 2] Since X and Y are independent.
(2)
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Next, we expand the second term in the RHS of (1), to get

(Exp[X] +Exp[Y ])2 = (Exp[X])2 + 2Exp[X]Exp[Y ] + (Exp[Y ])2 (3)

Subtracting (3) from (2), we get

Var[X + Y ] =
(
Exp[X2]− (Exp[X])2

)
+
(
Exp[Y 2]− (Exp[Y ])2

)
= Var[X] +Var[Y ] (4)

We can generalize the above proof to many random variables. In particular, we can say that if
X1, X2, . . . , Xk are mutually independent random variables, then the variance of the sum is the sum
of the variances. However, we don’t need mutual independence. Pairwise independence suffices. The
proof is given as a solution to the UGP; perhaps you can try it. There is nothing more than the algebra
above except there are k things adding up.

Theorem 5. For any k pairwise independent (and therefore also for mutually independent) ran-
dom variables X1, X2, . . . , Xk,

Var

[
k∑

i=1

Xi

]
=

k∑
i=1

Var[Xi]
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