Functions¹

• **Definition.** A function is a *mapping* from one set to another. The first set is called the *domain* of the function, and the second set is called the *co-domain*. For *every* element in the domain, a function assigns a *unique* element in the co-domain.

Notationally, this is represented as

$$f:A\to B$$

where A is the set indicating the domain dom(f), and B is the set indicating the co-domain codom(f). For every $a \in A$, the function maps the value of $a \mapsto f(a)$ where $f(a) \in B$.

The <u>range</u> of the function is the subset of the co-domain which are <u>actually mapped to</u>. That is, $b \in B$ is in the range if and only if there is some element $a \in A$ such that f(a) = b. The range can also be written in the set-builder notation as

$$range(f) := \{ f(a) : a \in A \}$$

Remark: For any function f with finite domains and ranges, we have $|\operatorname{range}(f)| \leq |\operatorname{dom}(f)|$

• An Example. Suppose

$$A = \{1, 2, 3\}$$
, and $B = \{5, 6\}$, then the map $f(1) = 5$, $f(2) = 5$, $f(3) = 6$ is a valid function.

A is the domain. B is the co-domain. In this example, B also happens to be the range.

- The Identity Function. When the domain is the same as the co-domain, the *identity* function id : $A \to A$ maps $a \in A$ to $a \mapsto a$.
- More Examples.
 - Usually (say in calculus) a function is described as a formula like $f(x) = x^2$. Henceforth, whenever you see a function ask your self how does it map to the above definition. In this example, this is as follows.
 - the domain is \mathbb{R} , the set of real numbers, and so is the co-domain. The map is $x \mapsto x^2$ check both are real numbers. The range of the function is the set of non-negative real numbers (sometimes denoted as \mathbb{R}_+).
 - $f(x) = \sin x$ is a function whose domain is \mathbb{R} and the range is the interval [-1, 1].
 - A (deterministic) computer program/algorithm is also a function; its domain is the set of possible inputs and its range is the set of possible outputs.

¹Lecture notes by Deeparnab Chakrabarty. Last modified: 28th Aug, 2021

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

Remark: How about the function $f(x) = \sqrt{x}$? Is this a function? When you think about it, you see some issues if we don't define the domain and co-domain. For instance, if the domain contains negative numbers, then what is $\sqrt{-1}$? Ok, so perhaps the domain is all positive real numbers. However, we also have a problem with $\sqrt{4}$ – is it mapping to +2 or -2? Note it can only map to a unique number. This can be resolved by stating the domain and co-domain are both non-negative reals, and the $x \mapsto \sqrt{x}$ goes to the positive root.

Exercise: Given a set $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$, describe a function $f : A \to B$ whose range is $\{5\}$, and describe a function g whose range is $\{4, 6\}$. Just to get a feel, how many functions can you describe of the first form (whose range is $\{5\}$), and how many functions can you describe of the second form?

- Sur-, In-, Bi- jective functions. A function $f: A \to B$ is
 - surjective, if the range is the same as the co-domain. That is, for every element $b \in B$ there exists some $a \in A$ such that f(a) = b. Such functions are also called *onto* functions. For example, if $A = \{1, 2, 3\}$ and $B = \{5, 6\}$, and consider the function $f: A \to B$ with

f(1) = 5, f(2) = 5, and f(3) = 6. Then, f is surjective. This is because for $5 \in B$ there is $1 \in A$ such that f(1) = 5 and for $6 \in B$ there is a $3 \in A$ such that f(3) = 6.

Remark: If A and B are finite sets, and $f: A \to B$ is a surjective function, then $|B| \le |A|$?

- *injective*, if there are no collisions. That is, for any two elements $a \neq a' \in A$, we have $f(a) \neq f(a')$. Such functions are also called *one-to-one* functions.

For example, if $A = \{1, 2, 3\}$ and $B = \{5, 6, 7, 8\}$, and consider the function $f: A \to B$ with f(1) = 5, f(2) = 6, and f(3) = 8. Then, f is injective. This is because f(1), f(2), f(3) are all distinct numbers.

Remark: If A and B are finite sets, and $f: A \to B$ is an injective function, then |A| = |range(f)|. Thus, $|A| \le |B|$.

Injective functions have *inverses*. Formally, given any injective function $f:A\to B$, we can define a function $f^{-1}:\operatorname{range}(f)\to A$ as follows

$$f^{-1}(b) = a$$
 where a is the unique $a \in A$ with $f(a) = b$.

- *bijective*, if the function is both surjective and injective.

For example, if $A = \{1, 2, 3, 4\}$ and $B = \{2, 4, 6, 8\}$, then the function f(x) = 2x defined over the domain A and co-domain B is a bijective function. Can you see why?

Remark: If A and B are finite sets, and $f: A \to B$ is a bijective function, then |B| = |A|. We will see this useful fact many times in the combinatorics module.

• Composition of Functions. Given a function $f: A \to B$ and a function $g: B \to C$, one can define the composition of g and f, denoted as $g \circ f$ with domain A and co-domain C as follows:

$$(g \circ f)(a) = g(f(a))$$
 that is $a \mapsto g(f(a))$

Note this is well defined since for every $a \in A$, $f(a) \in B$, and thus $g(f(a)) \in C$.

Examples

- Suppose $A = \{1, 2, 3\}$ and $B = \{5, 6\}$ and $C = \{3, 4\}$. Also suppose $f : A \to B$ is defined as f(1) = 5, f(2) = 6, and f(3) = 5; and $g : B \to C$ is defined as g(5) = 3 and g(6) = 4, then the composed function is $(g \circ f)(1) = 3$, $(g \circ f)(2) = 4$, and $(g \circ f)(3) = 3$.
- If $f: \mathbb{R} \to \mathbb{R}_+$ defined as $f(x) = x^2$ and $g: \mathbb{R}_+ \to \mathbb{R}_+$ defined as $g(x) = \sqrt{x}$ (as defined above), then (convince yourself) that $(g \circ f)(x)$ returns the *absolute* value of x.
- If $f:A\to B$ is a bijection, and $f^{-1}:B\to A$ is its inverse, convince yourself that $(f^{-1}\circ f):A\to A$ is the $\mathrm{id}:A\to A$ identity function.

Answers to exercises

• f(1) = 5, f(2) = 5, f(3) = 5 is an example of $f: A \to B$ with range $\{5\}$. Similarly, g(1) = 4, g(2) = 4, g(3) = 6 is an example of a function $g: A \to B$ with range $\{4, 6\}$. There is only one function of the first type. Of the second type there are more. For instanct h(1) = 4, h(2) = 6, h(3) = 6 also has range $\{4, 6\}$. Can you find one more? How many such functions are there?