Numbers: Modular Arithmetic!

* Definition. Given any integer n > 0 and another integer a (not necessarily positive), the division
theorem? states that there are unique integers ¢, r such that a = gn +r with 0 < r < n. The number
r is denoted as a mod n.

» Examples. For example, 17 mod 3 is 2. This is because 17 = 3 x 5 + 2. Similarly, 13 mod 5 = 3.
Slightly more interestingly, (—1) mod 3 = 2. This is because —1 = 3 x (—1) 4+ 2. Similarly,
(—=7) mod 5 = 3 since =7 =5 x (—2) + 3.

* The Ring of Integers modulo n.

Fix a positive natural number n. The way to think about the mod n operation is as a function which
takes integers to the set {0,1,2,...,n — 1} of possible remainders. There is a name for this set of n
remainders; it is called the ring of integers modulo n and is denoted by Z,,.

mod n :Z — Z, a+— amodn

Why ring? Well just consider how the numbers map. 0 maps to 0, 1 maps to 1, and so on til (n — 1)
maps to (n — 1). But then n maps to 0, it “rings” around to 0, and the process starts again. (n + 1)
maps to 1 and so on. It also rings the same way for negative numbers. 1 maps to 1, 0 maps to 0, —1
maps ton — 1, —2 maps to n — 2, and so on.

* An Important Notation.

The function mod n is clearly not injective. Indeed, any two numbers which map to the same
element are called equivalent modulo n.

Given two integers a, b, we use the notation
a=,b
to denote the condition that ¢ mod n = b mod n.

» Important Properties. The following simple but important properties are crucial to be comfortable
with this new “kind” of math. I would recommend trying to actually prove the facts by yourself and
then peeking at the solution.

a. (Equivalence under addition of multiple of n.) For any natural number n and integers a and b,
a =y, (a+bn).
Suppose a mod n = r, that is, a = qn + r. Then, a +bn = qn+r +bn = (¢+ b)n + r. Thus,
(a + bn) mod n = r as well.
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The division theorem may sound “obvious” to you, for this is probably something you have seen from grade school, but it
requires a proof. Why should there be a quotient-remainder pair? And why unique? A UGP from the past explored this.



b. (Transitivity) If a =, band ¢ =, b, then a =, c.
a =, b implies there is some remainder 0 < r < n and quotients q1,q2 € 7Z such that a =
qn +7rand b = gen + r. ¢ =, b implies there is some q3 such that ¢ = q3n + r. Thus,
a mod n = r = ¢ mod n implying a =, c.

c. (Addition OK) Show that if a =,, b and ¢ =,, d, then (a + ¢) =, (b+ d).
a =, bmeans there is some remainder 0 < r < n and quotients q1,q2 € Z such that a = gin+r
and b = gan + .
Similarly, there is some remainder 0 < s < n and quotients p1,ps € Z such that c = pi1n + s
and d = pon + s.
Thus, (a+c) = (¢ +p1)n+(r+s) implying (a+c) =, (r+s) by equivalence under adding a
multiple of n. Similarly, (b+d) = (g2 +p2)n+ (r+s) implying (b+d) =, (r+s). Transitivity
implies (a + ¢) =, (b+ d).

d. (Multiplication OK) Show that if a =, band ¢ =, d, then (a - ¢) =, (b- d).
a =y, bmeans there is some remainder 0 < r < n and quotients q1, q2 € Z such that a = gin+r
andb = qgon + .
Similarly, there is some remainder 0 < s < n and quotients p1,ps € 7Z such that c = pin + s
and d = pon + s.
Thus,

(a-c) = (qn+7r)-(pin+s) = (@pin® + qns +pinr +rs) = (apin + qis +pir)n +rs
and,
(b-d) = (gan +7) - (pan + s) = (qapan® + gans + panr 4+ rs) = (gapan + q2s + par)n +7s

Therefore, (a-c) =, (r-s) by equivalence under adding a multiple of n, and so is (b-d) =, (r+s).
Transitivity implies (a - ¢) =, (b- d).

e. (Powering with a positive integer OK) Let k be a positive natural number. If a =, b, then

Apply the above k times. More precisely, a =, b and a =,, b implies (a - a) =, (b-b), that is
a®? =, b2 One proceeds inductively. If we already have shown a*~' =,, b*~1, then along with

the fact a =, b, we get (a*71 - a) =, (bF~1 - b), that is, a* =, b*.

f. (Division usually not OK) Show an example of numbers a, b, ¢,n where (a - b) =, (c - b) but
a #y C.
Let me show how I would come up with such an example before telling you the example. If
(ab) =, (cb), we know that (ab — ¢b) =,, 0, that is (a — ¢) - b =,, 0, or n divides (a — ¢)b. And
we want an example where a #%,, c that is n doesn’t divide (a — c).
Well, if n divides (a — ¢)b but not (a — c¢), one simple example would be when n = b and say
a — ¢ = 1. This leads us to the example n = 5, b = 5, a = 2, ¢ = 1. One can check —
(2-5) =5 (1-5) but 2 #5 1.
One may then think — hey, if b < n would this be true. Even in this case, the answer is NO. To
see this, again, we want n to divide (a — ¢)b but n should not divide (a — c¢). So b could be a
factor of n, and n /b is what divides (a — c) (but not n).



For instance, n = 6 = 2 -3, b = 3, a = 7 and ¢ = 5 suffices. Let’s check, Is 21 =¢ 15? Yes,
both give remainder 3 when divided by 6. Is 7 =¢ 5? No, 7 mod 6 = 1 which 5 mod 6 = 5.
Later on, we will see one case when division will be OK. You can perhaps guess (yes, when b
and n are relatively prime).

g. (Taking “roots” not OK) Show an example of numbers a, b, n and k, such that a* =, b*, but
a #y, b. In fact, show different examples for £ = 2 and k = 3.
Once again, the method is more important than the specific example.
Let’s start with k = 2. a* =, b*> means a® — b*> =,, 0. That is, (a — b)(a + b) =, 0. So, if n
divides the product of (a — b) and (a + b). We also want a #%,, b, that is, we want (a — b) #,, 0.
We want n not o divide (a — b).
Well, if n divides (a — b)(a + b) but not (a — b), one simple example would be whenn = a + b
and say a — b = 1. This leads us to the example n =5, a = 3, b = 2.
Let’s check: 3% =5 2° — yes, 9 divided by 5 is 4 which is 22. Is 3 =5 2? Of course not.
There’s our counterexample. Do you want to do the k = 3 case on your own? Here’s a hint:
a® —b® = (a —b)(a® + ab + b?).

* Modular Exponentiation Algorithm

Suppose we want to figure out what is the remainder when we divide 3'° by 7, that is, what is
319(mod7)? The hard and often infeasible way would be to compute 3'° and then divide by 7 to
get the remainder. The above operations allow a much faster way to compute this. Let’s first do an
example and then give the whole algorithm.

3% mod 7 = (3%)° mod 7

= 9° mod 7

= (9 mod 7)° mod 7 Operation (c) above

= 2°mod 7 Progress! From 3'° we have moved to 2°.
= (2-2Y) mod 7 Can’t halve 5 as it is odd.

= ((2 mod 7) - (2% mod 7)) mod 7 We have again halved the exponent by moving to 2% = 4.
= (2- (4> mod 7)) mod 7
=4

We get 4 when we divide 3'° by 7. The general idea was to keep on reducing the exponent by half by

moving to the square, and then replacing the square to a possibly smaller number by taking the mod
“inside”. The full recursive algorithm is shown below.



1: procedure MODEXP(a, b, n) > Assumes b, n are positive integers.
2 > Returns a® mod n.
3 a < a mod n > We first move a to a mod n. Always get inside the ring.
4 if b = 1 then:
5: return a mod n. > Nothing to do — base case.
6 if b is even then:
7 return MODEXP(a?, 5, n)
8 else
9: s = MODEXP (a, (b — 1),n)> b — 1 is even.

10: > s = a’! mod n.

11: return (a - s) mod n.

Remark: The first line ensures a € {0,1,...,n — 1}. Note that we compute the mod of

(a - 8) mod n. The number a - s is at most n?. Thus, to compute a® mod n one only needs to be
“divide” numbers as big as n? by n. Thus n is a one or small two-digit number; this all can be
done by hand.

Exercise: Implement the algorithm up in your favorite language.



