
Infinite Sets: Countability1

• Examples of some infinite sets. A set S is an infinite set if |S| = ∞. What does that mean? Well,
it means that for any natural number N , one can find > N distinct elements of S. Here are some
examples of infinite sets we will see the next two lectures.

– The Naturals. N = {1, 2, 3, . . .}
– The Integers. Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} = {x : x ∈ N} ∪ {−x : x ∈ N} ∪ {0}
– The Rationals. Q = {pq : p ∈ Z, q ∈ Z \ {0}}
– The Reals. R. What are the reals? That is a deep question and forms the first few lectures of an

Analysis course. For us, we will go with

R = {
∞∑
i=0

ai
10i

, a0 ∈ Z, 0 ≤ ai ≤ 9, ∀i ≥ 1}

The numbers a1, a2, . . . form the decimal notation of the number denoted as the summation.

– Python Programs. P . The set of all possible Python programs.

– The Strings. Σ∗. The set of all strings formed by using letters from a finite set Σ.

– Boolean Functions. F . The set of all functions which assign each natural number a value either
0 or 1.

F := {f : N→ {0, 1}}

For instance the isPrime(n) function is an element of F .

There are two main points to this and the next lecture.

– There are many kinds of infinities (we will see two).

– The cardinalities of the set of Boolean functions, and the set of Python programs are different!
Thus, there must exists functions which have no programs.

And then, lastly, we will see an explicit problem which cannot have any algorithm.

• Recall. A function f : A → B is an injection if for any two distinct a1 6= a2 in A, we have
f(a1) 6= f(a2).

• Countable Sets. A set S is called countable if there exists an injection f : S → N.

It is called so because the elements of S can be ordered and counted one at a time (although the
counting may never finish).

More precisely, using f one can devise an algorithm which for any natural number k gives the kth
number in the ordering, such that for every s ∈ S, there is some k such that

The following code prints this sequence.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 28th Aug, 2021
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!
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1: procedure ORDERSET(k)
2: . Returns the kth element of S given by an injection f : S → N.
3: . Assumes k ≥ 1 is natural, and k ≤ |S|.
4: count← 0; n← 1
5: while count < k do:
6: if there exists some s ∈ S such that f(s) = n then: . i.e. f−1(n) ∈ S
7: count← count + 1 . Hit someone in S. Increment count.
8: s∗ ← s. . s∗ is the (count)th element in the sequence.

9: n← n+ 1. . Move to the next element in N.
10: return s∗ . Since we exit the loop when count = k, s∗ is the kth element.

The next two theorems show that the above algorithm indeed returns a valid ordering. We need to
show two things: (a) termination, and (b) every element in S is indeed in the order. We did not cover
this in class. Make sure you agree.

Theorem 1. The algorithm ORDERSET always terminates for any k ∈ N if |S| ≥ k.

Proof. Since |S| > k, there exists a subset {s1, . . . , sk} of S of some k different elements of S. Let
N := maxki=1 f(si). Note that this is well defined since we are taking a maximum over a finite number
of elements. We assert that byN rounds of the while loop, the above algorithm will terminate. Indeed,
by N rounds, the algorithms will encounters f(s1), f(s2), . . . , f(sk) and the count would reach k. It
may terminate even earlier since there may be some s′ /∈ {s1, . . . , sk} with f(s′) < N which may
increase count. But definitely by the N th while loop the algo would terminate.

Theorem 2. For every element s ∈ S, there is some k ∈ N s.t. ORDERSET(k) returns s.

Proof. Let N = f(s). We claim that for one k ≤ N , ORDERSET(k) must return s. Why? If not,
let s1, s2, . . . , sN be the N elements of S returned by ORDERSET(k) for 1 ≤ k ≤ N . Firstly, we
claim these si’s are different, and indeed f(s1) < f(s2) < · · · < f(sN ). This is because if k < `,
then the n in Line 9 is incremented more in the run for ` than the run for k. But all these numbers
must be in {1, 2, . . . , N − 1} if none of the si’s are s; we don’t skip any natural number n. This is a
contradiction.

Remark: Different injective functions can lead to different orderings. But the important fact is
that any countable set can be ordered into a sequence.

• Examples of Countable Sets.

– Finite sets are trivially countable. If a set S is finite and |S| = k, then the elements of S can be
renamed as {e1, e2, . . . , ek}. The injective function f(ei) = i implies S is countable.

– N is countable by definition. But there are many more interesting examples.
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– Set of Integers. The set Z is countable. To see this, consider the following function f : Z→ N.
If x > 0, then f(x) = 2x. If x ≤ 0, then f(x) = 2(−x) + 1. Note that the co-domain of this
function is indeed the natural numbers.
For instance, f(2) = 4, f(−2) = 5, and f(0) = 1.

Claim 1. The function f : Z→ N defined above is injective.

Proof. To see this is injective, we need to show f(x) 6= f(y) for two integers x 6= y. We may
assume, without loss of generality, x < y. If both x and y are positive, then f(x) = 2x < 2y =
f(y). Similarly, if both are non-negative, then we get f(x) = −2x + 1 > −2y + 1 = f(y).
The only other case is x is non-negative and y is positive. In this case, f(x) is odd while f(y) is
even.

If we use the above algorithm to figure out the ordering of Z, we get:

(0, 1,−1, 2,−2, 3,−3, 4,−4, · · · )

• Some operations that preserve countability.

Theorem 3. If S is countable, and T ⊆ S, then T is countable.

Proof. If f : S → N is an injection, then the restriction of f to T , that is, g : T → N defined as
g(t) = f(t) is also an injection.

Theorem 4. If S is countable and T is countable and S ∩ T = ∅, then S ∪ T is countable.

Proof. We can use the trick for showing integers are countable.

Let f : S → N be the injective function and g : T → N be the injective function which show they are
countable. We now define a function h : S ∪ T → N which is injective. Indeed,

h(x) =

{
2f(x) if x ∈ S.
2g(x) + 1 if x ∈ T .

To prove this is an injective function, take any two a 6= b in S ∪T . Either both are in S, in which case
h(a) = 2f(a) 6= 2f(b) = h(b) where f(a) 6= f(b) for f is an injection. Similarly, if both are in T ,
then h(a) 6= h(b). If one is in S and the other is in T , then h(a) (if a ∈ S) is even while h(b) is odd.
Thus, h(a) 6= h(b) here as well.

Theorem 5. If there is a function g : A → B which is an injection, and the set B is countable,
then the set A is countable.

Proof. Since B is countable, there is an injective function f : B → N. We claim that the function
(f ◦ g) is an injective function from A to N. Indeed, if a 6= a′, then g(a) 6= g(a′). Let b = g(a) and
b′ = g(a′). We get (f ◦ g)(a) = f(b) and (f ◦ g)(a′) = f(b′). Since b 6= b′, we get (f ◦ g)(a) 6=
(f ◦ g)(a′).
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• The Set of Rationals is Countable. This may be a surprise since the set of rationals are dense, that
is, between any two rational numbers, there is a rational number. Nevertheless, they are countable.

To show this, we need to construct an injection g : Q → N. For now, we only show an injection of
g : Q+ → N where Q+ are all the positive rationals; we leave the extension to the full set of rationals
as an exercise.

This can be defined as follows: given any positive rational number z = p/q in the reduced form (that
is, gcd(p, q) = 1), define

z = p/q g : z 7→ 2p3q

Clearly, the functions maps a positive rational number to a positive integer.

We claim that the above function g : Q+ → N is injective. To see this, pick two different positive
rationals x = p/q and y = r/s such that x 6= y. We need to prove g(x) 6= g(y), that is, 2p3q 6= 2r3s.

Since x 6= y, we have p 6= r, or q 6= s, or both. If p 6= r, then the largest power of 2 dividing g(x)
and g(y) are different, implying g(x) 6= g(y). If q 6= s, then the largest power of 3 dividing g(x) and
g(y) are different, implying g(x) 6= g(y). In either case, g(x) 6= g(y).

Exercise: Extend the above proof to give an injection g : Q → N. Hint: use the fact that the
union of two countable sets is countable.

Exercise: What ordering of the (positive) rationals does the above give using the algorithm for
getting ordering from the injective function? Order the first 7 positive rationals.

• The Set of Python Programs is Countable.

Indeed, we show the set of strings Σ∗ over any finite alphabet Σ is countable. Since P ⊆ Σ∗ for Σ
given by all the < 200 symbols on your keyboard, Theorem 3 would show P is countable.

To do this, for any n ∈ N∪{0}, let us define Σn ⊆ Σ∗ be the collection of all strings over the alphabet
Σ which have exactly length n. Clearly,

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · =
∞⋃
n=0

Σn

Observation. For any fixed n, the set Σn is indeed a finite set. Indeed, it has size exactly |Σ|n which is
a large but finite number. And therefore, since finite sets are countable, there is at least one injective
function

fn : Σn → N

For instance, one could look at the alphabetical ordering of strings in Σn. This is well defined since
Σn is finite.

And now we are ready to define the injective mapping h from Σ∗ to N using the same idea as in
rationals. Given any σ ∈ Σ∗, define

h : σ 7→ 2|σ| · 3f|σ|(σ)

That is, if |σ| = n where n ∈ N ∪ {0}, then we map σ to 2n · 3fn(σ).
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To see which this is an injection, let us select σ 6= σ′ in Σ∗.

We claim this is an injection. To see this, take σ 6= σ′.

Case 1: |σ| 6= |σ′|. In this case the largest power of 2 dividing g(σ) and g(σ′) are different, and thus
the two numbers must be different.

Case 2: |σ| = |σ′| = n. In this case, both lie in Σn implying fn(σ) 6= fn(σ′). Thus, the largest power
of 3 dividing g(σ) and g(σ′) are different, and thus the two numbers must be different.

• Where are we headed? The fact that P is countable will lead us to the notion of “uncomputable”
functions. What does that mean? For this we need to define what a computable function is. We will
do so rather informally (and please take CS39 to get the rigorous version of computability) by saying

A function f : N → {0, 1} is computable if there is a python code C taking input an
number and outputting 0 or 1, such that for every n ∈ N, we have C(n) = f(n).

Theorem 6. If every function in F were computable, then F would be a countable set.

Proof. We describe an injective map from F to P; we would be done by Theorem 5.

Indeed, gven a function f ∈ F , since it is computable, there is a code C ∈ P which computes it. We
claim for two f 6= f ′ ∈ F we can’t have the same code C. Indeed, if f 6= f ′, there exists some n ∈ N
such that f(n) 6= f ′(n). But both are C(n). Contradiction.

Next lecture, we show F is uncountable. And thus, there must exist uncomputable functions.
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