Dynamic Programming: Edit Distance'

In this lecture, we will look at another class of poster-child problems for dynamic programming: “string”
problems. The input to these problems will be strings of the form s[1 : m] where each s[i] will be from some
alphabet . This alphabet could be {0, 1}, the alphabet of ASCII symbols, or { A, C, G, T}, depending on
the applications.

How far is the string algorithm from the string logarithm? How far is apple from banana? How
far is the cat-genome from the mouse-genome? Does it make sense to ask these questions? Well, the third
question may point one to the importance of such a question. But how do we make the question well-defined
so that we can to talk about it? The edit distance or the Levenshtein distance is one way to capture this.

Given two strings s[1 : m| and ¢[1 : n], the edit distance captures the notion of distance between s and
t defined using 3 operations. The first is the insert operation, ins(s, ¢, ¢), which inserts character c after s[i],
thus making s longer; del(s, j) deletes s[j] from s making it shorter; and sub(s, 7, ¢) replaces s[i] with the
character c keeping the length the same. Each operation is assumed to cost 1 unit. The edit distance between
s[1 : m] and £[1 : n] is the minimum cost sequence of operations of the kind ins, sub, del which can required
to convert s into . This cost is called the edit distance between s and t, and is denoted as ED(s, t).

For example, if s is apple and ¢ is banana, then ED(s,t) < 5 since one can go from apple —
bapple — banple — banale — banane — banana. The operations are ins(s,0,b), sub(s,3,n),
sub(s,4,a), sub(s,5,n), and sub(s,6,a). Turns out, this is the best one can do for these two strings.
Finding the edit distance is the problem we will look at today.

EDIT DISTANCE

Input: Two strings s[1 : m] and ¢[1 : n].
Output: Return ED(s, t).

Size: m, n.

At first glance, the problem seems to be rather complicated. For instance, suppose we had to find the edit
distance between apple and rallies. One sees that the sequence of letters (a, 1, e) appears in both strings
in that order, although not contiguously. It seems like a good idea (not saying the best idea) to not touch
them, and then move using insertions and substitutions as apple — rapple — raplle — raplles —
ralles — rallies.

However, the number of such subsequences can be pretty large. Indeed, it corresponds to a subset of
locations on the strings, and the number of subsets (as in the subset-sum and knapsack) is exponentially
large (it’s 2™). Going over all of them is a bad idea. Again, dynamic programming will come to our rescue.

As in SUBSET SUM and KNAPSACK, we imagine the “best” solution which takes us from s to ¢. Note
that a solution for an EDIT DISTANCE instance, is a sequence 7 of operations where each entry is an
ins, del, or sub. The cost of the solution, ED(s, ¢) is simply the length || of this sequence. Let 7* be the
best sequence (which we don’t know), but we want to argue about its structure. In particular, we want to
argue this solution contains solutionettes.

To do so, let us focus on the /ast entries of both strings s and ¢. For example, if s = apple and
t = rallies. The last entries are s[m] = e and t[n] = s. After we perform the operations in 7*, the
character s[m] at the end must become the character ¢[n] at the end. There are four ways this can occur.

'Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

One, t[n] was introduced using a ins operation somewhere in 7w*. This could occur, for instance, if
s = pan and t = any where 7* is pan — pany — any. The character ¢[n] = y is inserted in the first
step of 7*.

Two, maybe the character ¢[n] was already present in the string s. In that case, we get there by using
a del on s[m| somewhere in 7*. This could occur, for instance, if s = ate and ¢ = cat where 7* is
ate — cate — cat. The character {[n] = t was already present, and the character s[m| = e was
deleted in the second step of 7*.

Three, maybe the ¢[n] substituted the last entry s[m]. This could occur, for instance, if s = pan and
t = pit where 7* is pan — pat — pit. The character ¢[n] = t substitutes s[m] = n in the first step
of T*.

Four, maybe s[m| and ¢[n] are the same characters, in which case we can leave them alone. This could
occur, for instance, if s = bag and t = cog where 7* is bag — bog — cog.

To make dynamic programming work, we need to see if the remaining steps of 7 give an optimum solution
for a smaller sub-instance of EDIT DISTANCE. If so, then we will have discovered the recursive substructure.
Indeed, in all the four cases described above, we do have this.

In this case, the remaining operations of 7* takes s[1 : n] to ¢[1 : m — 1]. In the example above, it
would be pan — an.

In this case, the remaining operations of 7* takes s[1 : n — 1] to ¢[1 : m]. In the example above, it
would be at — cat.

In this case, the remaining operations of 7* takes s[1 : » — 1] to ¢[1 : m — 1]. In the example above,
it would be pa — pi.

In this case, not the remaining but the whole of 7* takes s[1 : n — 1] to t[1 : m — 1]. In the example
above, it would be ba — co.

Therefore, from the instance I = (s[1 : m],¢[1 : n]), we get three smaller subinstances I; = (s[1 :
m — 1],t[1 : n—1]), I = (s[1 : m],¢[1 : n —1]), and I3 = (s[1 : m — 1],¢[1 : n]), and it seems that
(a) a solution of I leads to a solution of I; or Is or I3, and (b) solutions of I, Is, I3 lead to solutions of
I (once again, formal proof comes later — first the idea). If one were to draw the recursion tree more, one
would observe that a “typical subinstance’ would look like like I’ = (s[1 : i],¢[1 : j]). Thus, these are
parameterized by 0 < i < m and 0 < j < n, and therefore can be arranged in an (m + 1) x (n + 1) grid.
The base case: when ¢ = 0 or j = 0, that is when one of the strings is empty, in which case the edit distance
is the length of the other string. We have all the ingredients for the dynamic programming solution which
we now rigorously provide below in our usual six-step procedure.

a. Definition: For any 0 < i < mand 0 < j < n, let us use ED(i, j) to be the edit distance between the
strings s[1 : ¢] and ¢[1 : j]. We are interested in ED(m, n).

What should Cand(i, j) be? Since the edit distance is the smallest number of “string operations”
(ins/del/sub), let’s define Cand(i, j) as the all possible sequences 7 of string operations which take
the string s[1 : 4] to the string ¢[1 : j]. Armed with this notation, we get

ED(i) — .
(i,7) ﬂecr?nlc?(i,j)‘”‘

b. Base Cases:

ED(0,j) = jforall 0 < j < mand ED(i,0) = i for all 0 < i < m. There is only one way to go from
an empty string to a string j — keep inserting. There is only one way to from a string of length ¢ to an
empty string — keep deleting.

c. Recursive Formulation: Since we need to know whether the last characters of the strings are equal
or not, let us introduce a piece of notation which will help us. Let 1; ; be the indicator variable of
whether s[i] = t[j] formally defined as

B {1 if s[i] = t[j]

w 0 otherwise
Foralli > 0,5 > 0:

ED(é,j) = min(1+ ED(i — 1,5), 1+ ED(i,j — 1), (1—-1;,;) +ED(i—1,5—-1))

d. Formal Proof:

(>): Let 7* be the sequence of operations which took s[1 : 4] to ¢[1 : j] and |7*| = ED(4, 7). Note
that, in 7*, either s[i] is deleted from the end, or ¢[j] is inserted at the end, and if neither of these
two occur, we must either substitute s[i] and ¢[j], or these characters are the same. In the first
case, consider the sequence of operations 7 which is 7* without the deletion. Observe, that 7
acting on s[1 : i —1] would take us to ¢[1 : j]. Thus, |7*| = 1+|x| > 1+ED(i—1, 5). Similarly,
in the second case, consider the sequence 7 which is 7* without the insertion. 7 takes us from
s[1 : 4] tot[l : j — 1], and thus, in this case, |[7*| > 1 + ED(4, j — 1). Finally, if neither of the
above two occur, then either s[i] = ¢[j] in which case 7* actually takes s[1 : i — 1] to ¢[1 : j —1].
Thatis, 7* > ED(i—1,j—1) = (1—-1;;)+ED(i—1, j—1) since s[i] = t[j]. Or, s[i] # t[;], and
there is a substitution. And in this case, 7 defined as 7* minus that substitution takes s[1 : i — 1]
to ¢[1: j —1]. Again giving, 7* > 14+ED(i —1,j —1) = (1 —1;;) + ED(i — 1,5 — 1) in this
case. In sum, in all of the possible cases, ED(i, 7) = |7*| is larger than one of the things in the
RHS parenthesis.

(<): Let 7 be the sequence of operations in Cand(i — 1, j) of length ED(i — 1,7). Consider the
sequence of operations 7' = del(s,) o 7, which first deletes the last entry of s[1 : i] to get
s[1 : i — 1], and then follows the sequence of operations in 7 to get to s[1 : j]. Then, 7’
takes s[1 : 4] to ¢[1 : j] and thus, 7’ C Cand(4, j). Therefore, |7’| > ED(i,j). Since |7’
1+ |r| = 1+ ED(4,j), we get that ED(z,5) < 1+ ED(¢ — 1,7). Similarly, one can show

ED(4,j) <1+ ED(7,j — 1); the only difference is that we would ins(¢[1 : j — 1],¢[j], j) at the
end of doing 7.
Finally, suppose 7 was a sequence of operations that took s[1 : 7 — 1] to ¢[1 : j — 1] and whose
length was ED(i — 1,5 — 1). If s[i] = t[j], and thus 1, ; = 1, then 7 also takes s[1 : i] to
t[1: j]. Andso, |r| > ED(4, j) implying ED(4, j) < (1—1;;)+ED(i—1,j —1). If s[i] # t[j],
and thus 1, ; = 0, then consider the sequence 7’ = sub(s,t[j],7) o m. =’ takes s[1 : 7] to
t[1 : j] and thus |7'| > ED(4, j). Since |7'| =1+ || = (1 —1,;) + ED(: — 1,5 — 1), we get
ED(i,j) < (1—-1;;)+ED(i—1,5 —1).

e. Pseudocode for computing ED(m, n).

11:

13:
14:
15:
16:

17:
18:
19:
20:
21:
22:

23:
24

25:

26:
27:
28:
29:
30:
31:

32:

1: procedure ED(s[1 : m],t[1 : n]):

t[1: j].

> Returns the edit distance between s and t.
Allocate space E[0 : m,0 : n] > Eli, j] will contain the edit distance between s|1 : i| and
E[0,j] « jforall 0 < j < nand E[i,0] < i forall 0 < i < m. > Base Cases.
for 1 <: < mdo:
for 1 < ;5 < ndo:
Eli,j] < min(E[i — 1,j] +1, Efi,j —1]+1, Eli —1,j - 1]+ (1 - 1;,))
return E[m, n].
> E[m, n] now contains the value of the edit distance
> Below we show the “recovery” pseudocode which shows one way to get from s to t

in E[m,n| moves.

i<myjmnym =]
> Invariant: |r| + Eli, j| = E[m,n]
while ; > 0 and j > 0 do:
if E[i,jl=FE}i —1,j — 1] + (1 — 1; ;) then:
if 1, ; # 1 that if s[i] # t[j] then: > Substititure
Append sub(s, i, t[j]) to 7
i+—i—-1j«j-1
elseif E[i, j] = 1+ E[i — 1, j] then:
> We must have deleted s|i]
Append del(s, i, s[i]) to
141—1
else: > We must have that E[i, j| = 1 + El[i,j — 1] and we must have inserted t[j] at the

Append ins(s, i, t[j]) to
Jei—-1
> At this point either i = 0 or j = 0. Depending on which, we need to do a few more

operations.

while : > 0 do:
Append del(s, i, s[i]) to 7
14 1—1

while j > 0 do:
Append ins(s, i, t[j]) to
J—i—1

return Reverse of 7, E[m, n|

f. Running time and space The above pseudocode take O(mn) time and space.

Theorem 1. The EDIT DISTANCE between two strings can be found in O(nm) time and space.

	Edit Distance

