
Dynamic Programming: When does Dynamic Programming
Fail?1

1 When does Dynamic Programming Work?

We have seen some examples of problems that could be solved by dynamic programming. You have seen
more examples in your problem sets (weekly, advanced, ungraded). Hopefully you see that there are two
things required to make an efficient dynamic programming solution:

• Recursive Structure. Given an instance I of a problem, we should be able to break into smaller
instances I1, I2, . . . , Ik such that (a) an “optimal” solution S to I can be used to obtain an “optimal”
solution Sj for some Ij , and (b) given “optimal” solutions S1, . . . ,Sk to the smaller instances, one
can obtain an “optimal” solution to I.

The way we usually did this is to imagine an “optimal” solution S, and then break this by arguing
about whether it “contained” the “last” element or not. And then we argued that when it did, then the
“remaining” items formed an optimal solution to a smaller sub-problem.

• Small Number of Problems. Given any instance I, one obtains the smaller subproblems I1, . . . , Ik,
and then for each Ij , one obtains even smaller problems and so on and so forth. We must be able
to control the number of such sub-problems seen. One way to do this is to observe that any small
sub-instance seen somewhere in this “recursion tree” can be parametrized by a few parameters which
ranges within certain “manageable” values.

For example, in the knapsack problem these parameters were m and b, where m ranged from 0 to n,
b ranged from 0 to B, and the instance parameterized by m, b only looked at the “first” m items and a
knapsack of capacity b.

These two steps, once figured out, led us to the six-step approach to writing a dynamic programming so-
lution precisely. The most important step was the definition; this involves a function parameterized by the
parameters which governed each smaller subproblem. Equally important is the recurrence which rigorously
states the recursive structure of the problem. If you go and investigate each and every dynamic programming
problem you have solved (or will ever solve), you should see that these two features leaping out.

2 An Example where DP doesn’t seem to help: Independent Sets in Graphs

Given an undirected graph G = (V,E), a subset I ⊆ V is said to be independent if no two u, v ∈ I have
an edge between them. The Independent Set problems takes input a graph and outputs the largest sized
independent set.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

MAXIMUM INDEPENDENT SET

Input: Undirected graph G = (V,E) with n vertices and m edges.
Output: Independent set I of the largest size/cardinality

Let the vertices of G be named {v1, v2, . . . , vn} arbitrarily. Let us imagine S to be a largest sized
independent set. As has been working for us well, let us consider whether S contains the last vertex vn ∈ V .
Two cases arise. Case 1: the vertex vn /∈ S. In that case, S must also be the largest sized independent set
in G − {vn}, the graph which has the vertex vn deleted. What about Case 2 : the vertex vn ∈ S. What
can we say about the remaining solution S − {vn}? It is indeed true that S − {vn} is an independent set of
G−{vn}. However, it may not be the largest independent set of G−{vn}. The example below in Figure 1
illustrates this.

v1

v2v4

v5

v3

Figure 1: The set S = {v1, v5} is a largest independent set of G. The set {v1} = S−{v5} is an independent
set of G − {v5}, but not the largest one. Rather, the two neighbors {v2, v4} forms the largest independent
set of G− {v5}.

Thus, we don’t have the recursive structure in this way. This should remind you of the “mistake” in the first
try for LIS in the previous lecture. And as in there, it doesn’t mean the “death” of the DP approach, it is just
that we probably have to shift our point of view.

And so we ask ourselves: can we find a smaller instance for which S − {vn} is indeed the largest
independent set? The answer is yes. Consider the graph G′ = G − NG(vn) where NG(vn) = vn ∪ {u :
(u, vn) ∈ E}, that is, itself plus the neighbors of vn in G. We now observe that any independent set of G′

can be augmented with vn to get an independent set of G which is one larger. Therefore, S − {vn} should
be the largest independent set in G′, or otherwise we could augment that to get a larger independent set in
G. In the example in Figure 1, {v1} is a largest independent set in G′ = G− {v5, v2, v4}, that is, the single
edge graph {v1, v3}.

Therefore, to find the largest independent set in G, we need to be told the largest independent set in
G1 = G− {vn} and the largest independent set in G2 = G−N(vn). The base case is when the graph has
only one vertex in which case the solution is the singleton. And thus, we have found our recursive structure.
Yay!

More precisely, if we define I(G) to be the size of the largest independent set in G, then we get

For any vertex v ∈ G, I(G) = max(I(G− v), 1 + I(G−N(v))) (1)

However, there is a big snag, which is that the number of subproblems is not bounded. For instance
to get the largest independent set in G1 = G − {vn}, we need to know the largest independent set in
G1 − {vn−1} = G − {vn−1, vn}, but also in G1 − N(vn−1). Similarly, to get the largest independent set
in G2, assuming vn−1 ∈ G2 (and not deleted in N(v1)), we would need to know the largest independent set
not only in G2 − {vn−1}, but also G2 −N(vn−1) = G− (N(vn) ∪N(vn−1)).

2

If you stare at it for a moment more , you will observe the combinatorial explosion: to get the largest
independent set in G, we may have to know the largest independent set in G − S for most subsets S ⊆ V .
In other words, when we think how the instances/graphs are getting smaller, we observe they are being
induced over subsets of vertices over which we don’t a priori have control over structure. Said differently,
we cannot see any small number of patterns governing the subproblems solved, and each subproblem seems
to be indexed/parameterized by the subset itself. Therefore, in the bottom up approach, we would need to
store the largest independent set in graphs induced by all subsets of vertices; a ludicrous proposition since
at the same time we could just check all subsets and return the best!

Remark: Nevertheless, if someone puts a gun on your head and asks for the largest independent set,
you could try the memoization approach to implement the recurrence (1). You may just get lucky, but
don’t count on it. There are better ways to practically compute the largest independent set, but none of
them have guaranteed running time theorems.

So, what was the point of all this? Two points. One, dynamic programming is not a panacea even
when recursive structure exists. The number of smaller instances that need to be solved in all should be
manageable. Till now, in the problems we saw, this occurred because if our solution contained a “last”
element, then the remaining part of the solution did form a optimal solution of a not only smaller but
“structured” sub-problem (like the “first” m items, or prefixes of strings). This is important – without it
dynamic programming is either not straightforward, or just plain impossible to work with.

The second point, specific to independent set, is that if our instances do have structure in their neigh-
borhood sets N(v), then perhaps we can use the ideas above to get a good dynamic programming solution.
Indeed, one example is given in the UGP as the “weighted interval packing” problem. Do you see why that
is an (weighted) independent set problem? The other example is on trees which we describe next.

3 Independent Set on a Tree

Our final example of dynamic programming is the independent set problem on trees. To make things precise,
we are focussing on rooted trees. Given a tree T = (V,E) rooted at r, every vertex v which is not a root
has a unique parent denoted as p(v), and every vertex v which is not a leaf has children stored in the list
chld(v). The picture below is an illustration.

MAXIMUM INDEPENDENT SET IN A TREE

Input: Rooted Tree T on n vertices with root r. Every vertex v ∈ T has a weight w(v).
Output: Independent set I of the largest weight.

Note that any path is also a rooted tree; one can think of the whole path hanging from the last vertex.
This gives an idea of ordering on the tree – starting from root, downwards. Using this we argue about the
recursive structure as follows.

Consider the optimal independent set S in the tree T . We branch on two cases.
Case 1, the root r /∈ S. In that case, as we argued before, S will be an optimal independent set in the

graph T − r. Note, however, that T − r is no longer a tree, and thus we don’t quite have the same problem!
However, T − r breaks into a bunch of trees: T1, . . . , Tk where k is the number of children of the root r.
Suppose Sj := S ∩ Tj for all 1 ≤ j ≤ k, that is, the part of S in the sub-tree Tj . Then we note that each
Sj must be the optimal independent set in Tj . Intuitively (formal proof coming up), this is because what we
select in Tj in our independent set doesn’t affect what we select in some other Tj′ .

3

r

a b c

g hed f

x zi j k

Figure 2: r is the root of the tree. chld(r) = {a, b, c} and p(a) = r. Note that any vertex in the tree has a
sub-tree rooted at that vertex.

Case 2, the root r ∈ S. In this case we are sure that none of r’s children can be in S. Now consider the
“grandchildren” of the root r. That is, the union of chld(vi) for all vi ∈ chld(r). Let U1, . . . , U` be the trees
rooted at these grandchildren. We see that S− r must be partitioned into ` classes, and each of these classes
must be optimal independent sets in the corresponding tree Uj . The base case are the leaves; in this case the
optimal independent set is clearly the leaf itself.

We have obtained our recursive structure, and we are ready to state the dynamic program in our template.

• Definition: Given tree T and any vertex v ∈ T , we define ISTree(v) to be the weight of the maximum
weight independent set in the tree Tv rooted at the vertex v. We are interested in ISTree(r).

• Base Cases: ISTree(⊥) = 0 where ⊥ is a null vertex; ISTree(`) = w(`) for every leaf `.

• Recursive Formulation: For any non-leaf v ∈ T , let chld(v) be the set of its children and let chld2(v)
be the set of its grandchildren. Formally, chld2(v) :=

⋃
u∈chld(v) chld(u).

ISTree(v) = max

 ∑
u∈chld(v)

ISTree(u), w(v) +
∑

z∈chld2(v)

ISTree(z)


• English Explanation: Given above, along with the explanation for Independent Set.

• Formal Proof: To formally prove the above, it helps to introduce the notation of Cand(v) to be the set
of all independent sets of the sub-tree Tv rooted at v.

ISTree(v) = max
S∈Cand(v)

w(S)

where w(S) :=
∑

x∈S w(x).

(≤): Let S ∈ Cand(v) be an independent set in Tv with w(S) = ISTree(v).

* Case 1: v /∈ S. In this case, Su := S∩Tu for every u ∈ chld(v) is an independent set in Tu.
Thus, w(Su) ≤ ISTree(Tu) implying w(S) =

∑
u∈chld(v)w(Su) ≤

∑
u∈chld(v) ISTree(u).

4

* Case 2: v ∈ S. This implies S ∩ chld(v) = ∅. Let Sz := S ∩ Tz for every z ∈
chld2(v). Since Sz is independent, w(Sz) ≤ ISTree(z). Then, we get w(S) = w(v) +∑

z∈chld2(v)w(Sz) ≤ w(v) +
∑

z∈chld2(v) ISTree(z).

In each case, ISTree(v) is less than one of the two things in the RHS.

(≥): Since there is no edge between two vertices in sub-trees of two different children of v, we
get that the union of the independent sets in the trees rooted at the children of v must form
an independent set in the tree rooted at v. Similarly, the union of the independent sets in the
trees rooted at grandchildren and the vertex v is also an independent set in the tree rooted at v.
Therefore, ISTree(v) is greater than both the terms in the RHS.

• Pseudocode for computing value of Independent Set on a tree.

1: procedure INDEPEDENTSETTREE(T,w):
2: . Returns the maximum weight independent set
3: We assume we have access to the tree as layers. L1 is the set of leaves, L2 is the set of

vertices with all children in L1; L3 is the set of vertices with all children in L2, and so on
and so forth. Let h be the number of layers.

4: We also assume we have a data structure which stores chld(v) and chld2(v) for all
vertices v.

5: Allocate space I[v] for every vertex v. . I[v] will contain ISTree(v).
6: for 1 ≤ i ≤ h do:
7: for v ∈ Li do:
8: I[v] = max

(∑
u∈chld(v) I[u], w(v) +

∑
z∈chld2(v) I[z]

)
9: . Note that I[u] and I[z] are defined since they appear in lower layers.

10: . I[r] now contains the value ISTree(r)

• Recovery. We have left the recovery code for the independent set out of the above pseudocode (out of
laziness) and describe it in words. We maintain a queue Q which initially contains r. At each step we
pick the first vertex v of the Q and check if I[v] equals the first summation in Line 8 or the second.
In case of the first, we add chld(v) to Q; in case the second, we add v to S and add all the chld2(v) to
Q. Since whenever we add v to S we remove all its chld(v) from consideration, the returned set S is
independent.

It can be seen that at each step the following invariant remains true

w(S) +
∑
u∈Q

I[u] = I[r]

Since we end when the Q is empty, we end up with an independent set of weight I[r].

• Running time and space. The above pseudocode take O(n) space and O(n) time, given the above
data structures are in place. All these can also be done in O(n) time.

5

Theorem 1. The maximum weight independent set in a tree can be found in O(n) time and space.

6

	When does Dynamic Programming Work?
	An Example where DP doesn't seem to help: Independent Sets in Graphs
	Independent Set on a Tree

