Graphs : Strongly Connected Components via DFS'

1 Strongly Connected Components (SCCs) using DFS

We now see that the strongly connected components of a graph G can be found in linear O(n + m) time.
This is a truly surprising algorithm which really illustrates the power of DFS. Let’s try to first sketch the
main ideas behind the algorithm, and then subsequently give the final description and analysis. To do so,
consider the graph in Figure 1.

Figure 1: Illustrative example for SCC.

In the graph on the left, there are three strongly connected components marked in light blue circles. The
graph on the right is one whose vertices are these three components, and we have an edge between two
components (for instance from C; to C5) if and only if there is an edge (u,v) in the original graph with
u € C7 and v € Cy. Note there could be, and in this example there are, multiple such edges. We require
that there be at least one. In general, given a graph G as on the left, then the graph on the right is called
(G*°%; note we don’t have this graph up front but is useful for analysis and designing the algorithm.

Claim 1. G*“is a DAG.

Proof. Suppose not, and suppose there was a cycle (C1,Co,...,Ck,C1) in G*°. This means there are
vertices z;,y; in C; (possibly x; and y; are the same) such that (x;,y;+1) is an edge in G, and (zg,y1)
is also an edge in G. But then, we argue next, C; U --- U C} should have been one strongly connected
component, which would be a contradiction. Take any two vertices u and v in the union. Say v € C; and
v € C; where i < j without loss of generality (otherwise, we swap names). We now show a path from u to
v. First, we go from u to z; which is possible since C; is strongly connected, then we take the (x;, y;+1) edge
to ¥;+1, and from there to x;11 (since Cj41 is strongly connected), and so on and so forth till we reach y;,
upon reaching which, we take the path from y; to v (which again exists since C is strongly connected). [

Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

Before we move on to discovering the SCCs, let us see why the algorithm for undirected graphs is not
enough. Recall what we did for undirected graphs; we ran DFS on G in any arbitrary order and returned
the connected components of the forest. Why doesn’t it work? Well, in the graph in Figure 1 consider what
happens when we run DFS from the vertex 1. You see that all the vertices are reachable from 1 and thus
end up in the tree rooted at 1. The resulting vertices are not strongly connected. To stress why this is not an
issue in undirected graphs note that in undirected graphs if there is a path from a vertex 1 to a set of vertices
S, then there is a path from any vertex in S to 1 as well. This is patently false in directed graphs.

An Encouraging Idea. Suppose that in the graph in Figure 1, we ran DFS from vertex number 9. Then,
we would definitely discover all the vertices that 9 can reach. But these are precisely the ones in C'3, the
strongly connected component connecting 9. Why is this? This is because, there is no edge which starts
from inside C3 and goes outside. That is, because C'5 is a sink component of G°°. But this is wonderful;
there is some vertex from which if we start DFS we get at least one strongly connected component. Let us
make this (finding one strongly connected component) our goal for now.

From our understanding of topological ordering in DAGs, we know that the vertex with the smallest
last[v] is a sink vertex in a DAG. Perhaps, we could conjecture something similar for a general graph: in any
graph GG and any DFS run, the vertex with the smallest last[v] must lie in a sink component of G*. If that
is the case, then we could get what we want. Unfortunately, this is not true. Consider the graph in Figure 1
again, with DFS being run in the {1,2,...,9} order, and the adjacency lists also being visited in this order.
We see that vertex 3 has the smallest last[], and indeed 3 lies in a source component of G*°.

Remark: A philosophical interlude. In research, we often think we have a good understanding
of objects, and this leads us to make some conjectures. Just like we did above. And often they are
wrong. I'll not lie — disappointment is usually the first response. But what really defines a researcher is
resilience. Counterexamples are the world’s ways of telling us, “Your understanding was incomplete.
Refine them. Think harder.” And when we do get back to the drawing board, or square one, the world
often rewards us with epiphanies.

Epiphany 1. Although the vertex with the smallest last[v] may not be in a SINK component of G*, it
is in fact true that the vertex with the largest last[v] does indeed lie in the SOURCE component of G*.
Again going back to the example in G°¢, we see that the vertex 1 has the largest last, and it is in the source
component C'y of G

In fact, more is true. For any component C' € G°°¢, define

f(C)= rgleaédast[v]

That is, f(C) is the largest last in that component.
Lemma 1. If (C;, C;) is an edge in G*°, then f(C;) > f(C}).

Before we prove the above lemma, let us see why it implies that the vertex with the largest last must
lie in a source component of G°°“. Suppose z is the vertex with the largest last, and suppose it lies in
component C;. Clearly, f(C;) = last[z], for x is the largest last vertex. Now if C; were not a source
component, there would be some component C; with (C;, C;) an edge in G*°°. The above lemma would
imply f(C;) > f(C;) = last[z]. That is, there is a vertex y € C; with last[y] > last[z]. That contradicts
the choice of x. Thus, x must lie in a source component. Let us now prove the lemma.

Proof. First we make a claim about strongly connected components.

Claim 2. For any strongly connected component C'if x € C has the largest last, then it also has the smallest
first. In particular, 2’s interval contains all the intervals of every other vertex in C.

Proof. Suppose not. Suppose y € C, y # x has the smallest first. Since C'is strongly connected, there is
a path from y to z. y has the smallest first among all vertices in this path, so by the path property, it must
have the the largest last among all vertices in this path. In particular, last[y] > last[x]. Contradiction. See
figure below for illustration O

= last
X = arg gle%)f ast[v]

Figure 2: If y # x is the vertex with the smallest first in C, then (a) there is some path y, a, b, x from y to
x, and (b) since firstly] < first[a], first[b], first[x], by the path property says last[y| > last[z]. Therefore,
first[z] < first[v] < last[v] < last[x] for all v € C.

The proof of the lemma is as follows. Let x be the vertex in C; with the largest last and y be the vertex
in C; with the largest last. Thus, f(C;) = last[z] and f(C;) = last[y]. For the sake of contradiction,
suppose last[z] < last[y]. By the Nested Interval Property, either (a) first[y] < first[x], that is, ’s interval
is completely contained in y’s interval, or (b) last[x] < first[y], that is =’s interval is disjoint and lies before
y’s interval.

We will reach a contradiction in both cases. Case (a) is easy: if x’s interval is completely contained in
y’s interval, then there is a path from y to x in the DFS forest. In particular, that would imply an edge from
C; to C; in the G°°° contradicting the DAG nature of G°°.

In Case (b), ’s interval finishes before %’s interval. By the claim above, this means that the interval of
every vertex in C; finishes before the interval of any vertex in C; starts. Now since (Cj, C;) is an edge, there
is some a € C; and b € Cj such that (a, b) is an edge in G. From the claim, we see first[z] < firstja] <
last[a] < last[z] and first[y] < first[b] < last[b] < last[y]. Which in turn means first[a] < last[a] <
first[b] < last[b]. This contradicts the edge property for (a, b).

See Figure 3 for an illustration of the whole proof in a picture.

O

So, the above lemma gives us a way to recognize a vertex in the source component of G*“. But we
needed a vertex in the sink component of G*°°. How are we going to get that? A second epiphany answers
this.

x = arg max last[v =arg max last[v
g VEC; [] Y & TJEC]' []

o -0

For sake of contradiction, °
suppose

l By Claim 2 l

[] [] A path from y = x contradicting
“no edge from C, to C”
a Jda b Ib getrom&;tot

Contradicts edge property for (a,b)

Figure 3: Proof of Lemma 1 in a picture.

Epiphany 2. Let G\, be the graph where all edges of G have been reversed. Observe that the strongly
connected components of Gye, are the precisely the same as those in G, and that (Gey)*¢ = (G*)yey. In
other words, the source components of (G)5¢ are precisely the sink components of (G\ey)*¢. Therefore, if
we run DFS on G and look at the vertex with the largest last[v] that is guaranteed to be in the sink component
of (Grey)®“. Which will allow us to find the strongly connected components of (G\e,). Which is the same
as the strongly connected components of GG. Done!

Strongly Connected Component Algorithm. We now state the full algorithm. The algorithm takes input
G and returns the components of G5°°. Furthermore, they are returned in the topological order in G3¢. This
fact is also useful (see a UGP problem regarding this).

1: procedure STRONCONNCOMP(G):

2 > Returns the strongly connected components of G

3: > The order in which it is returned is the Top. Ord. of G*°.

4: Run DFS(G, {1,2,...,n}) to get last[v] for every vertex.

5 7 be the decreasing order of last[v]’s. > Can be found in O(n) time a la Top. Ord.
6 Obtain Gey. > This takes O(n + m) time.

7 Run DFS(G ey,) and return the connected components of the forest F'.

Theorem 1. The STRONGCOMMCOMP algorithm returns the strongly connected components of G in
a topological order of G, in O(n + m) time.

Proof. The running time is easiest to figure out. There are two DFSs which take O(n +m) time. One needs
to sort the last in decreasing order. As in TOPOLOGICAL ORDERING, this can be done in O(n) time. What
is interesting is the correctness of the algorithm.

Let (', ..., C} be the components of G*°“. We claim that the components of the final forest £ returned
in Line 7 are these components returned in topological order of G°°°. More precisely, at the end of Line 7,
the variable fcomp contains the number of strongly connected components, that is, &, and for every 1 <
t < fcomp, the vertices C; := {v : Fcomp[v] = t} forms the ¢th strongly connected component, and the
ordering C1, . . ., C} is the topological order of GG5<¢,

The discussion before the description of the algorithm indicates that C is a sink component of (G'ey)
(to remind, the first vertex in 7 must lie in the source component of G°° which is the sink component of
(Grev)*€). That is, C is a true strongly connected component, and being the sink component of (G'ey)
it is indeed a source component of G°°°. What about the remaining C;’s?

To argue about them, we assume the statement is true for the first ¢ components returned in Line 7.
That is, they are indeed the first ¢ components in some topological order of G°. Next, we argue about the
(¢ + 1)th component.

Note, by the way DFS works, that the vertex v picked as root at the (i + 1)th step of Line 7 is the first
vertex in 7 not in C7 U ... U C;. Since 7 is the decreasing order of lasts obtained in Line 4, we get that
last[v] = max,¢c, ... ¢, last[u]. Suppose v lies in component C; of G5°. We now claim that Lemma 1
implies C} is a source component in G*°° \ (Cy U - -- U C;). Suppose not: then there is some (C}, C;) edge
in G*°° with k& > 4. From the lemma, we get that f(C}) > f(C;) (otherwise the Lemma is violated). But
this contradicts the choice of v. Therefore C; is a source component of G*°° \ (Cy U - -- U C;). That is, C;
is a sink component of (Gyey)*“ \ (C1 U - - - U C;). Now notice that the DFS run from vertex v on Gye, Will
only discover vertices in C; as it is a sink component in (Gyey)* \ (C1 U --- U C;). That is, the (i + 1)th
step discovers a component C; 1 which is a sink component of (G,)*¢ \ (C; U ---U ;). That is, it is a
source component of G5<¢\ (C1 U - - - U C;). But that implies C; 1 is the next component in the topological
order of G°¢¢ after (', ..., C;. O

It is instructive to run the algorithm STRONGCONNCOMP by hand. Indeed, why don’t you try it on this.
The first time around, run DFS in the alphabetical order of vertices. Turn page and check your answer.

[9T ‘ST]

[81°6]

|

25D OVA 9yl

D JO 354aA34 UO J3PJO SIY} Ul S4Q uny
(@©H14D3‘g V) :s1se| Jo 4apJio Suiseasdaq
[T1°9]

[rTe] VAN4!

	Strongly Connected Components (SCCs) using DFS

