
Graphs : Shortest Paths : BFS + Dijkstra1

In the next few lectures we will look at an important suite of algorithms : finding shortest paths in graphs.
The setting is of a directed graph G = (V,E). Each edge e would have an associated cost2 c(e). The first
two lectures will involve algorithms you have already seen earlier (CS 10, or sometimes even CS 1). These
are the BFS and Dijkstra’s algorithm. Our presentation will be slightly different, and will also prove why
these algorithms are correct. Let us begin by stating the problem.

SINGLE SOURCE SHORTEST PATHS (SSSP)
Input: Directed Graph G = (V,E), a source vertex s ∈ V , costs c(e) on edges.
Output: Paths from s to every vertex v ∈ V which have the smallest total cost.

Before we begin our algorithms, let us pause a moment and talk a bit about certificates. Any shortest
path algorithm must also be able to prove that the paths returned are indeed the shortest. How would we
prove something is the shortest? Indeed, this is not something specific to shortest paths; it is a universal
question about any algorithm. How does an algorithm prove its correctness? What is the certificate that it
has worked correctly. For example, in the knapsack problem, what is the certificate that the subset returned
by the dynamic programming algorithm is the maximum cost one? The certificate is the table that it returns.
If you go back and look at every algorithm we have seen so far, there are certificates that the algorithm also
constructs on the way. Indeed, as problems become more complex, asking about these certificates often
leads to good algorithms.

Back to shortest paths. How do we prove that a path p from s to v is the shortest? All the algorithms
we will see in this class will use what are called distance labels as the certificates. A distance label dist(v)
prescribes a value to every vertex v. Think of these labels as being upper bounds on the shortest path from s
to v; we will always maintain the cost of the shortest path from s to v with be always ≤ dist[v]. We do this
by making sure there is some path from s to v of that cost. What makes these distance labels useful is when
they have the following property:

Definition 1 (Valid Distance Labels). A distance label is an assignment dist(v) on every vertex of the graph
G. A distance label dist is valid with respect to (G, s, c) if it satisfies the following

dist(s) = 0, and for all edges (u, v), dist(v) ≤ dist(u) + c(u, v) (1)

Theorem 1. Suppose d is a valid distance label w.r.t (G, s, c). Then the cost of any path from s to v
must be at least dist(v).

Before we prove this above theorem, let us see why it gives certificates. For any v, we have a distance label
dist[v] equaling the cost of some path from s to v. And the theorem says all other paths of cost at least
that. And thus, we know that dist[v] is the shortest path length. Do such labels always exist? Can we find
them? These are questions that should come to your mind, and indeed that is what we will see in the coming
lectures. For now, let us prove the above theorem.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2These costs can be negative. For the first two lectures, we will assume that is not the case. In the last lecture of this week, we
will also allow negative edges. As we will see, making costs negative will change the texture of the problem.

1



Proof of Theorem 1. Suppose not. Suppose there is a vertex v such that there is a path from s to v of cost
< dist(v). Let this path be (s =: x0, x1, x2, . . . , xk := v). Let pi denote the path from x0 to xi; so the path
p = pk. By our assumption, we have c(pk) < dist(xk). We also have c(p0) = dist(x0); indeed, p0 is just
a path with zero edges and dist(x0) = dist(s) = 0 since d is valid. Let j be the first (smallest) index such
that c(pj) < dist(xj). Such a j must exist and must be ≥ 1 and ≤ k. By definition, c(pj−1) ≥ dist(xj−1)
(otherwise, j − 1 would have been the chosen index).

However, pj is nothing but the path (pj−1 ◦ (xj−1, xj)). Thus, c(pj) = c(pj−1) + c(xj−1, xj) ≥
dist(xj−1) + c(xj−1, xj). Since d is valid, c(xj−1, xj) + dist(xj−1) ≥ dist(xj). Therefore, we get c(pj) ≥
dist(xj) contradicting our assumption that c(pj) < dist(xj).

Remark: Do valid distance labels always exist? The answer is no. If the graph G has a cycle C
such that

∑
e∈C c(e) < 0, then valid distance labels cannot exist. For instance, suppose the cycle is

(x1, x2, x3, x1). If valid distances labels did exist, then we would have dist(x2) ≤ dist(x1)+ c(x1, x2),
or, c(x1, x2) ≥ dist(x2) − dist(x1). Similarly, we would get c(x2, x3) ≥ dist(x3) − dist(x2) and
c(x3, x1) ≥ dist(x1) − dist(x3). Adding all of these we would get

∑
e∈C c(e) ≥ 0 which contradicts

that the cycle has negative cost. Indeed, no one knows any “small” certificates for shortest paths in
graphs which have negative cost cycles!

1 Breadth First Search

We now begin algorithms for shortest paths starting with the easiest case when all c(e) = 1 for e ∈ E. In
this case, the algorithm is BFS. All algorithms, however, follow a similar structure: maintain distance labels,
fix violations to validity, and end when everything is valid. In BFS the algorithm scans through vertices in a
queue fashion starting with neighbors of s, and then moving on to neighbors-of-neighbors, and so on.

1: procedure BFS(G, s):
2: . Returns a distance label to every vertex.
3: . Every vertex not s also has a pointer parent to another vertex.
4: dist[s]← 0; dist[v]←∞ otherwise.
5: parent[v]← ⊥ for all v.
6: Assign queue Q initialized to s. . FIFO Queue
7: while Q is not empty do:
8: v = Q.remove(). . The first entry in Q

9: for all neighbors u of v do: . Update (v, u).
10: if (dist[u] > dist[v] + 1) then: . dist[u] too large.
11: . For BFS, in fact, dist[u] =∞.
12: Set dist[u] = dist[v] + 1. . Update dist[u]

13: Q.add(u). . Since u’s distance label was modified, put it in the Q

14: Set parent[u] = v.

We begin with a simple but key observation.

Observation 1. dist[v] of any vertex can never increase over time. Also, whenever dist[v] is modified,
dist[v] = dist[parent[v]] + 1. In general, dist[v] − dist[parent[v]] ≥ 1. Let T be the collection of edges
(parent[v], v) at any point of the algorithm. This has no cycles and is thus a tree rooted at s.

2



Proof. We modify dist[u] to dist[v] + 1 only if it was bigger than dist[v] + 1. The also part follows
from Line 12 and Line 14. When dist[v] is modified, we have dist[v] − dist[parent[v]] = 1. At other
times when dist[v] is unchanged but perhaps dist[parent[v]] may go down (it doesn’t for BFS), the dif-
ference can only go up. Suppose we do get a cycle (x1, x2, . . . , xk, x1). From the previous observation,
dist[xi]− dist[xi−1] ≥ 1 for all i, and adding this for all vertices in the cycle we get 0 ≥ k ≥ 1, which is a
contradiction.

Lemma 1. If the BFS algorithm terminates, then it returns a valid distance label.

Proof. Since we assume BFS terminates, it ends with dist[v] on every vertex. Suppose, for the sake of
contradiction, dist[v] > dist[u] + 1 for some (u, v) (recall, c(u, v) = 1). Since dist[u] is finite, it enters the
Q at some time, and consider the last time dist[u] is being processed. At that time u is added to the Q, and
consider when u reaches the front of the queue. At that for-loop, dist[v] is either ≤ dist[u] + 1 or set to
dist[u]+1. Subsequently, by Observation 1, dist[v] can only go down contradicting dist[v] > dist[u]+1.

Remark: There was absolutely nothing special about costs being 1 or even being positive in Ob-
servation 1 and Lemma 1. In particular, we can think of a weighted BFS where the only differences
are in Line 10 and Line 12 where the 1 is changed to c(v, u). The statements and proofs go through.
However, the if in the latter’s statement is a big if. Can you come up with an example of a graph with
costs (negative allowed) where the weighted BFS would never terminate?

We now show that when costs are unit, the BFS algorithm does terminate. In fact, the same vertex does
not enter the queue more than once. The following monotonicity lemma is key.

Lemma 2. (Monotonicity Lemma.) Fix a particular while loop, and let Q = [u1, . . . , uk] be the queue
content just before the beginning of the loop. Then dist[u1] ≤ dist[u2] ≤ · · · ≤ dist[uk] ≤ dist[u1]+ 1.

Before we prove the lemma, let us see why it is useful for analyzing the running time of BFS.

Claim 1. In the BFS algorithm, a vertex v never enters the queue more than once.

Proof. Suppose not, and suppose v is the first vertex which enters Q twice. Let u be the first vertex which
added v to Q the first time, and let x be the second vertex which added v the second time into Q. When u
added v to Q, the algorithm set dist[v] = dist[u] + 1. Now consider the time x is adding v again to Q. At
this point, we must have dist[v] > dist[x] + 1. That is, dist[u] > dist[x]. But since u was popped out of the
queue before x, the previous monotonicity lemma tells us dist[x] ≥ dist[u]. Contradiction. Therefore, no
vertex enters the Q twice.

Theorem 2. Using BFS once can find the shortest path length from a vertex s to every other reachable
vertex v in O(n+m) time.

Proof. Claim 1 shows that the algorithm terminates in O(n + m) time since every vertex v enters once
and takes O(1 + deg+(v)) time in the corresponding while loop. Summing over all vertices gives the run-
time. Lemma 1 shows that dist[v]’s are valid distance labels, and thus by Theorem 1, dist[v] is at most the

3



shortest path length. All that remains to show is that there is a path from s to v of exactly this length. This
is precisely the reverse of (v, parent[v], parent[parent[v]], . . . , s). To see why, note that dist valid implies
dist[v]−dist[parent[v]] ≤ 1 and Observation 1 implies the difference is≥ 1. We must have equality. Indeed,
the tree T defined in Observation 1 at end of BFS is called the shortest path tree.

Proof of Lemma 2. The proof is by induction over the while loops. At the beginning of the first while loop,
Q = [s] and the lemma is vacuously true. Otherwise, fix a while loop, and let Q = [u1, . . . , uk], and let the
lemma be true right now. We now show it remains true after this loop.

Let us see what the while loop does. First, it removes the vertex u1 from Q. It will then add every
neighbor x with current dist[x] > dist[u1]+1, and upon adding, the distances become dist[x] = dist[u1]+1.
Let these neighbors be x1, . . . , xr (note r could be 0 and there could be no such neighbors). After this while
loop is run, the contents of the Q is precisely [u2, u3, . . . , uk, x1, . . . , xr]. By induction, we know dist[u2] ≤
. . . ≤ dist[uk]. Furthermore, since dist[uk] ≤ dist[u1] + 1 (by induction), we see dist[uk] ≤ dist[xi] for all
1 ≤ i ≤ r. Finally, dist[xi] = dist[u1] + 1 ≤ dist[u2] + 1. And thus, we get dist[u2] ≤ . . . ≤ dist[uk] ≤
dist[x1] ≤ . . . ≤ dist[xr] ≤ dist[u2] + 1.

2 Dijkstra’s Algorithm

In this section, we look at the famous generalization of BFS when costs can be arbitrary positive numbers.
The difference with BFS is that it does not maintain a queue; rather it maintains dist[] labels initialized with
dist[s] = 0 and everything else∞. Henceforth, it picks the vertex with the smallest dist and then fixes this
label. For every unfixed neighbor, it updates the distance if that vertices distance label violates the validity
of the distance label. Unlike BFS, it is immediate that the algorithm terminate, but it is not immediate it
does so with valid distance labels. Indeed, if costs are negative, it does not.

1: procedure DIJKSTRA(G, s):
2: . Returns a distance label to every vertex. Every vertex not s also has a pointer parent to

another vertex.
3: dist[s] = 0; dist[v] =∞ otherwise.
4: parent[v] = ⊥ for all v 6= s.
5: Initialize R = ∅. . R will be the “reached” vertices whose dist[v]’s never change.
6: while R 6= V do:
7: Let v be the vertex /∈ R with smallest dist[v].
8: if dist[v] =∞ then:. No more vertices reachable from s

9: Break . Terminate
10: R← R+ v
11: for all neighbors u of v not in R do: . The distance labels set for only vertices outside R

12: if (dist[u] > dist[v] + c(v, u)) then:
13: Set dist[u]← dist[v] + c(v, u).
14: Set parent[u]← v.

Lemma 3 (Termination). The While loop in DIJKSTRA runs for at most n iterations.

Proof. At each while-loop iteration, a vertex is added into R and the algorithm stops when all vertices have
been added.

4



Lemma 4. Once a vertex x enters R its distance label dist and parent is never changed again. Furthermore,
dist[x] = dist[parent[x]] + c(parent[x], x).

Proof. This is made sure by Line 11 since it updates distances, if at all, only for vertices not in R.

Lemma 5 (Monotonicity Lemma). Let the order in which vertices are added to R be (v0, v1, . . . , vn).
Note that v0 = s itself. Then,

dist[v0] ≤ dist[v1] ≤ · · · ≤ dist[vn]

where dist[] are the distance labels at the end of the algorithm.

Proof. Suppose not, and let vi+1 be the first vertex for which this violated. That is, dist[vi+1] < dist[vi].
Since vi was added to R before vi+1, Line 7 implies the time when vi is added to R, we have dist[vi] ≤
dist[vi+1]. Also note that by definition, vi+1 is the vertex added in the next iteration.

Now, if (vi, vi+1) is not an edge then after vi enters R, dist[vi+1] is not modified in that for-loop. Thus
when vi+1 is added to R we still have dist[vi] ≤ dist[vi+1]. On the other hand, if (vi, vi+1) ∈ E, then after
the for-loop dist[vi+1] can only “go down” to dist[vi] + c(vi, vi+1). Since the costs are non-negative, this is
also ≥ dist[vi]. Thus, at this point dist[vi+1] ≥ dist[vi]. Since dist labels are not modified once they are set,
we get a contradiction.

Lemma 6. At the end of Dijkstra’s algorithm, the distance labels dist are valid.

Proof. Let (x, y) be any edge. If dist[y] ≤ dist[x], then since costs are non-negative, dist[y] ≤ dist[x] +
c(x, y) as well. If dist[y] > dist[x], then by Lemma 5 x enters R before y, and then either dist[y] ≤
dist[x]+c(x, y) or is set to the latter. Since dist[] never increase, at the end we have dist[y] ≤ dist[x]+c(x, y).
That is, the dist[] labels are valid.

As in BFS, this proves that DIJKSTRA returns the shortest path from s to every vertex v: dist[v] is a lower
bound on the shortest path, and the path which is the reverse of (v, parent[v], parent[parent[v]], . . . , s) is
indeed of this cost.

Lemma 7. DIJKSTRA algorithm can be implemented in O(m+ n log n) time.

Proof. This is a poster child application of priority queues. The data we wish to store as key-value pairs have
keys given by the vertex identities and value of vertex v is dist[v]. Line 7 is the EXTRACT-MIN operation.
Line 13 is a DECREASE-VAL operation. The number of times Line 7 is implemented is at most n+ 1 since
the while loop runs for at most n + 1 times. The number of times Line 13 is implemented is at most the
number of edges; each edge (v, u) appears when v enters R and this happens at most once.

If we use the usual array implementation (see the file graph_basics.pdf), then the running time is
O(m+n2). If we use the heap implementation, then the running time is O((m+n) log n). Using Fibonacci
heaps, we get the O(m+ n log n) running time.

5



Theorem 3. In graphs with non-negative edge costs, DIJKSTRA algorithm can find the shortest paths
from s to every vertex v in O(m+ n log n) time.

The Shortest Path Tree. Just like in BFS(G, s), DIJSKTRA(G, s) also returns a tree rooted at s defined
by the parents. More precisely, consider the graph on all vertices v with dist[v] < ∞ where we add the
edges (parent(v), v). This tree is called the shortest path tree.

DIJKSTRA doesn’t work with negative cost edges. Proofs to both lemmas, Lemma 5 and Lemma 6, cru-
cially use the fact that the costs are non-negative. Indeed, they are otherwise false and in fact the algorithm
fails even with one negative edge. Figure 1 shows an example.

S

a b

2 3

-2

Figure 1: DIJKSTRA fails on this graph with negative costs

First, note that the shortest cost path from s to a is actually (s, b, a) of total cost 1. Let’s see what
DIJKSTRA does. First s will assign a distance label dist[a] = 2 and dist[b] = 3. Then, it will pick a into R
since dist[a] was the smaller one. And then, by design, it will never update dist[a] ever again. Remember,
the reason DIJKSTRA does this is to make sure the algorithm proceeds fast. However, the negative edge
(b, a) is never allowed to update dist[a] again. And thus DIJKSTRA misses out and gives the wrong answer.
Again, if there were no negative edges, this won’t happen (as we just proved above).

6


	Breadth First Search
	Dijkstra's Algorithm

