
The Big-Oh Notation1

Given a function g : N→ R, O(g(n)) denotes a set of functions with domain N and co-domain R.

Definition 1. f(n) ∈ O(g(n)) if there exists two constants a > 0 and b ≥ 0 such that for all n ≥ b,
f(n) ≤ a · g(n).

In plain English, it means for “large enough” n (more precisely, n ≥ b) f(n) is at most a “scaled version”
of g(n) (more precisely, a · g(n)).

Remark: Although O(g(n)) is a set and f(n) belongs in the set, the world often abuses and says
f(n) = O(g(n)) when it means f(n) ∈ O(g(n)). This is important to keep in mind. O(g(n)) is a set,
and can’t be, for instance, added together. Yet, we will see us adding these things. In this lecture we
will make precise what these mean – these are all definitions and used for convenience.

Often when the function g(n) is “simple”, then one substitutes that function in the Big-Oh. For
instance, O(n) is the set of functions O(g(n)) where g(n) = n.

Example 1. Let f(n) = 10n + 4. We claim that f(n) = O(n). To show this, we need to exhibit two
positive constants a, b such that for all n ≥ b, we have 10n + 4 ≤ a · n. If we set b = 4, then we get for all
n ≥ 4, the LHS 10n + 4 ≤ 10n + n ≤ 11n. Thus, we can set b = 4, a = 11 to prove 10n + 4 = O(n).

Definition 2. f(n) ∈ Ω(g(n)) if there exists two constants a > 0 and b ≥ 0 such that for all n ≥ b,
f(n) ≥ a · g(n).

In plain English, it means for “large enough” n (more precisely, n ≥ b) f(n) dominates some “scaled
version” of g(n) (more precisely, a · g(n)).

Theorem 1. f(n) ∈ O(g(n)) if and only if g(n) ∈ Ω(f(n)).

Proof. There are two things to show. First, assume f(n) ∈ O(g(n)). That is, there exists a, b > 0 such
that for all n ≥ b, f(n) ≤ a · g(n). Dividing by a both sides (since a > 0) and rearranging, we get that
g(n) ≥ (1/a) · f(n) for all n ≥ b. This means g(n) ∈ Ω(f(n)).

Second, assume g(n) ∈ Ω(f(n)). That is, there exists a, b > 0 such that for all n ≥ b, g(n) ≥ a · f(n).
Dividing by a both sides (since a > 0) and rearranging, we get that f(n) ≤ (1/a) · g(n) for all n ≥ b. This
means f(n) ∈ O(g(n)).

Definition 3. f(n) ∈ Θ(g(n)) if there exists three constants b ≥ 0 and a1, a2 > 0 such that for all n ≥ b,
a1 · g(n) ≤ f(n) ≤ a2 · g(n).

Theorem 2. f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



Proof. One direction is easy, and the other is easier. The easier direction is given f(n) = Θ(g(n)), we
directly get f(n) = O(g(n)) (certified by b, a2) and f(n) = Ω(g(n)) (certified by b, a1).

The easy direction follows thus: since f(n) = O(g(n)), there exists constants b2, a2 ≥ 0 such that for all
n ≥ b2, f(n) ≤ a2 · g(n). Similarly, f(n) = Ω(g(n)) implies constants b1, a1 ≥ 0 such that for all n ≥ b1,
f(n) ≥ a1 · g(n). But this means for all n ≥ b = max(b1, b2), we have a1 · g(n) ≤ f(n) ≤ a2 · g(n).

It is sometimes important to show when some functions f(n) are not O(g(n)) of some other function.

Example 2 (Counterexample). If f(n) = n and g(n) = n2

3 − 7, then g(n) /∈ O(f(n)) or as is more
commonly stated, g(n) 6= O(f(n)). To prove this, let us suppose for contradiction’s sake that g(n) =

O(f(n)). Therefore, there exists constants a, b > 0 such that for all n ≥ b, we have n2

3 − 7 ≤ a · n. But
take n = max(3(a + 1), 7, b) + 1. Then, we get

n2

3
= n · n

3
> n · 3(a + 1)

3
since n > 3(a + 1)

= n · (a + 1) = an + n > an + 7 since n > 7

which in turn implies n2

3 − 7 > an which is a contradiction, since n > b as well.

Example 3 (Counterexamples). (Here is a common thing which confuses many students). 4n 6= O(2n).
Although 2n = O(n), when the n is in the exponent the constant next to n matters. That is, 22n 6= O(2n).
The reason is actually simple: 22n is not twice of 2n but square of 2n; and squaring takes us to a different
order of magnitude.

To prove formally, again we use contradiction. Suppose not, and say 4n = O(2n). Then there exists
a, b ≥ 0 such that for all n > b, 4n ≤ a · 2n. Firstly, a > 1 for 4n > 2n for large n. Choose n =
max(b, a) + 1. Then, we must have 4n = 2n · 2n > 2a · 2n > a · 2n, where the first inequality follows from
the fact that n > a (and therefore 2n > 2a) and the second inequality follows because a > 1 (and therefore
2a > a). Thus we get a contradiction.

Why are these notions useful? As mentioned in the first lecture, in the analysis of algorithms, we are
interested in understanding the running times of algorithms. In particular, we wish to understand the function
T (n) with respect to the size parameter n. As a first cut, we are interested in the asymptotic behavior of
T (n), that is, the behavior of T (n) as n grows larger and larger. The Big-Oh notation is perfect to capture
this: we don’t care about how T behaves in the small n regime, and we also don’t care about the scaling
factor of T . The latter is relevant in running time analysis since scaling boils down to “change of units”. And
what unit to use is not obvious. Should time be measured in number of BIT-ADDs? Should it be measured
in number of operations? Or Wall Clock time? The Big-Oh notation tries to capture the “big-picture”2.
In Section 1, we see some examples.

Remark: An algorithm A is a polynomial time algorithm if there exists a constant k ≥ 1 such that
TA(n) = O(nk). If k = 1, the algorithm is a linear-time, or sometimes simply linear, algorithm. If
k = 2, then the algorithm is a quadratic-time, or simply quadratic, algorithm.

2This is not to say the small picture is not important. When we really want performance in our implementation of an algorithm,
the constants are game-changers. Nevertheless, the really good algorithms often have wall clock times great too. Of course there
are exceptions, and you should always implement your algorithm to check which is the case.
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Useful Facts. The next few theorems are going to establish some useful properties of the Big-Oh notation.
Make sure you understand the theorem statements (as we will be using them willy-nilly); indeed, in the first
reading feel free to skip the proofs (but please do return back to them).

Theorem 3 (Some operations involving the notations). Below all functions take non-negative values.

(a) If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f(n) ∈ O(h(n)) as well.

(b) If f(n) ∈ Θ(g(n)) and g(n) ∈ Θ(h(n)), then f(n) ∈ Θ(h(n)) as well.

(c) If f(n), h(n) are both in O(g(n)), and s(n) := f(n) + h(n), then we have s(n) ∈ O(g(n)) as
well.

(d) If f(n) ∈ O(g1(n)) and h(n) ∈ O(g2(n)), then f(n) · h(n) ∈ O(g1(n) · g2(n)).

(e) Let f(n) ∈ O(g(n)), and h() is a non-decreasing, non-negative function of n. Recall composi-
tion of functions: (f ◦ h)(n) := f(h(n)). Then, (f ◦ h)(n) ∈ O((g ◦ h)(n)).

Proof.

a. f(n) = O(g(n)) means there exists constants a, b ≥ 0 such that f(n) ≤ a · g(n) for all n ≥ b.
g(n) = O(h(n)) means there exists constants a′, b′ ≥ 0 such that g(n) ≤ a′ · h(n) for all n ≥ b′.
Thus, for all n ≥ max(b, b′), we have f(n) ≤ (a · a′) · h(n). This proves that f(n) = O(h(n)).

b. Very similar proof as above, except there are three variables a1, a2, b to play with. Please do this
yourself (recommended).

c. As before, there exists a, b ≥ 0 and a′, b′ ≥ 0 such that for all n ≥ b, we have f(n) ≤ a · g(n) and for
all n ≥ b′ we have h(n) ≤ a′ · g(n). That is, for all n ≥ max(b, b′), we have s(n) ≤ (a + a′) · g(n).
Thus, s(n) = O(g(n)).

d. As before, there exists a, b ≥ 0 and a′, b′ ≥ 0 such that for all n ≥ b, we have f(n) ≤ a · g1(n) and
for all n ≥ b′ we have h(n) ≤ a′ · g2(n). Therefore, for all n ≥ max(b, b′), we get f(n) · h(n) ≤
(a · a′) · (g1(n) · g2(n)).

e. There exists a, b > 0 such that for all n ≥ b, we have f(n) ≤ a · g(n). Now since h is increasing,
for all n ≥ h−1(b) we have h(n) ≥ h(h−1(b)) = b. Therefore, For all n ≥ h−1(b), we get
(f ◦ h)(n) = f(h(n)) ≤ a · g(h(n)) = (g ◦ h)(n).

The following theorem is very useful to argue about the Big-Oh relations for large classes of functions.

Theorem 4. Suppose L := limn→∞

(
f(n)
g(n)

)
exists. Then,

L <∞⇔ f(n) ∈ O(g(n)) and L > 0⇔ f(n) ∈ Ω(g(n))
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In particular, 0 < L <∞⇔ f(n) ∈ Θ(g(n)).

Proof. Let me prove the first statement and leave the second’s analogous proof as an exercise – please, try
it, it requires one extra idea. Suppose L <∞. This means for any ε > 0, there is a number bε such that for
all n ≥ bε, we have ∣∣∣∣(f(n)

g(n)

)
− L

∣∣∣∣ < ε

In particular, we get for all n > bε, f(n)
g(n) ≤ L + ε. That is, f(n) ≤ (L + ε)g(n). Choose ε = 1, b := b1,

a := L + 1 to get that for all n ≥ b, f(n) ≤ a · g(n). Note a, b are constants independent of n, and thus,
f(n) ∈ O(g(n)).

On the other hand, if f(n) = O(g(n)), then there exists constants a, b such that for all n > b, f(n) ≤
a · g(n). That is, f(n)

g(n) ≤ a. Therefore, if limn→∞ (f(n)/g(n)) exists, then it must be L ≤ a <∞.

Let us illustrate the power of the above theorem. Take f(n) = 4n and g(n) = 2n and look at the ratio.
We get f(n)/g(n) = 4n/2n = 2n which goes to ∞ as n → ∞. Thus, 4n /∈ O(2n). The above two
theorems help a lot often. But be wary when limits don’t exist. In particular, when asked to prove from first
principles, you cannot use the limit theorem. We end with the “small o” notation as follows which I will
probably not use in this course but is commonly used.

Definition 4. We say that f(n) = o(g(n)) if limn→∞

(
f(n)
g(n)

)
= 0.

As a corollary, we get the following useful fact: polynomials are in the Big-Oh class of the leading
monomial (highest degree). I’ll leave the proof as an exercise; in fact, try proving it using first principles as
well.

Theorem 5. Suppose p(n) is a degree d polynomial, that is, p(n) = adn
d+ad−1n

d−1+ · · ·+a1n+a0.
Then, p(n) ∈ O(nd).

1 Analyzing Algorithms with Big-Oh Notation

Consider the example we looked at in the last lecture.

1: procedure MAX(A[1 : n]):
2: . Returns j where A[j] ≥ A[i] for all 1 ≤ i ≤ n.
3: rmax← 1. . Initialize running-max to 1

4: for 2 ≤ j ≤ n do:
5: if A[j] > A[rmax] then: . If A[j] bigger than running-max, swap.
6: rmax← j

7: return rmax.

Unspecified Constants. The size of the input was n, the number of elements in the array. To analyze the
running time, we need to first figure how much time does each line take. Well, this question is ill-defined
since we do not know the exact implementation of the algorithm. However, we will assume certain atomic
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steps take some unspecified constant time. That is, these steps are steps whose processing times do not
depend on n at all. Since we do not know these constants, we will use O(1) to denote their running time.

What do we mean by that? By definition, it means there exists constants a, b > 0 s.t. for all n ≥ b, we
get f(n) ≤ a · 1. Now suppose B := maxn<b f(n) is the maximum value this function takes in the range
{1, 2, . . . , b− 1}. This B is some fixed constant (could be a bazillion, we don’t care); it does not grow with
n. Therefore, combining the above two, we see that F (n) ≤ max(a,B) for all n. Implying f(n) is at most
some unspecified constant.

Remark: The running time of an algorithm on an input of size a constant (no matter how large the
constant is) is going to be O(1).

Now we can answer what TMAX(n) is for the above algorithm. We already know there are at most
(n− 1) for-loops, and in each for-loop, Lines 5 and 6 both take O(1) time. Thus, the total time spent on the
for-loops is O(n) (Theorem 3.(c)). The time taken in Lines Lines 3 and 7 is also O(1). Thus, the total time
is O(n).

Let us look at one other example.

1: procedure FOO(A[1 : n]):
2: for 1 ≤ i ≤ n do:
3: for i ≤ j ≤ n do:
4: if A[j] < A[i] then:
5: tmp← A[i]
6: A[i]← A[j]
7: A[j]← tmp

8: return A

b

Exercise: Before reading ahead, what do you think the above pseudocode does? Note how the absence
of comments makes reading unpleasant.

Let us analyze the running time (we don’t need to know what the algorithm does to figure out the running
time). Lines 5 to 7 each take O(1) time. The total time taken in the loops is therefore Big-Oh of the number
of loops. How many loops are there? There is an outer loop and there is an inner loop. The outer loop has
n iterations. The ith outer loop, however leads to (n − i + 1) inner loops. Therefore, the total number of
times Lines 5 to 7 is executed is

∑n
i=1(n− i+ 1). Now you can use your discrete math knowledge to prove

that this is O(n2).

Remark: Please do not ever say/write/thing something like “the running time is O(n2) because there
are two for-loops.” To appreciate this, analyze the running time of the above algorithm where Line 3 is
replaced by “for 2i ≤ j ≤ n:”. The number of loops will become

∑n
i=1 max(0, n − 2i + 1). This is

not O(n2). In fact, it is O(n log n) — can you see why?

Coming back to FOO, the total time in the for-loops is O(n2). Line 8 can be assumed to be O(1) (if only
pointer returned), or O(n) (if all the entries of array returned). Doesn’t really matter, since O(n2) plus this
“small change” is still O(n2).
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2 Abuse of Notation: what does it mean?

As if the abuse f(n) = O(g(n)) instead of f(n) ∈ O(g(n)) was not enough, in this course we will see
statements of the form

For every n > 0, , f(n) ≤ g(n) + O(h(n)) (1)

Again recall, O(h(n)) is a set of functions. What does it mean to “add a set”!? In fact, this is most prevalent
in recurrence inequalities. For instance, we see recurrence inequalities of the form

T (1) = O(1), and for all n ≥ 2, T (n) ≤ T (n− 1) + O(n) (2)

What do these mean?
So, whenever you see a recurrence as above, what it really means is that that there exists a function e(n),

such that (a) for all n ≥ 2, T (n) ≤ g(n) + e(n), and (b) e(n) ∈ O(n).
Let us unpack what e(n) ∈ O(n) means. It means that there exists positive constants a, b such that for

all n ≥ b, e(n) ≤ a · n. We are now going to simplify our lives a bit and see that we can actually state there
exists a constant A such that

∀n ≥ 2, e(n) ≤ A · n
How can we say this? Well, if n ≥ b, we get this with A = a. Let B = maxn<b e(n); this is some constant.
Note, that for all 2 ≤ n ≤ b, e(n) ≤ B ≤ B · n. Therefore, A = max(a,B) satisfies our needs.

Putting all together, the recurrence (2) actually means the existence of a constant A,B such that

T (1) ≤ B, and T (n) ≤ T (n− 1) + A · n, for all n ≥ 2

The reason for this abuse is brevity – writing out these constants and keeping track of them is tedious.
One of the nice things about the Big Oh notation is the fact that we can express things succinctly. Of course
brevity comes at a cost – awareness! Be wary, especially when you are solving recurrence inequalities with
Big-Oh’s and Theta’s floating about. Let me point out a mistake which you should never make.

Theorem 6. Warning: This is a wrong theorem followed by an erroneous proof.
Consider the following recurrence inequality:

T (1) = O(1); ∀n > 1, T (n) ≤ T (n− 1) + O(1)

The solution to the above is T (n) = O(1).

Wrong Proof of Wrong Theorem 6. We proceed by induction. The predicate P (n) is true if T (n) = O(1)
Base Case: When n = 1, T (n) = O(1). This is given to us.
We fix a k ≥ 1 and assume P (1), . . . , P (k) are all true. That is, T (m) = O(1) for all m ≤ k. We need

to show P (k + 1) is true. That is, we need to show T (k + 1) = O(1).
Well, T (k + 1) ≤ T (k) + O(1). Since P (k) is true, we get T (k) = O(1). Therefore, T (k + 1) =

O(1)+O(1). But adding a constant with another constant, is again a constant. So, T (k+1) = O(1). Hence
proved.

The above theorem is wrong, because we know what the recurrence really means there exists some
constants A,B such that

T (n) ≤

{
B if n = 1

T (n− 1) + A if n ≥ 2
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what the solution to T (n) is by the “opening up brackets” or the “kitty collection” method. For any
n ≥ 2,

T (n) ≤ T (n− 1) + A

≤ T (n− 2) + A + A

...

= T (1) + A(n− 1) ≤ An + (B −A) = O(n)

Where was the bug in the above induction proof? Whenever you see a wrong proof, you must find
out where were it is wrong. And the mistake crept in due to the abuse of notation. Consider what the
Theorem 6 is asserting : it says there is an (unspecified) constant C ≥ 0 such that T (n) ≤ C for all n.
When we try to apply induction, we must first agree upon this constant. We don’t know what it is, but it
exists, and we stick with it. Base Case: T (1) ≤ C – fine. Induction Hypothesis: for all 1 ≤ n < m, we
have T (n) ≤ C – sure. Now we need to prove T (m) ≤ C as well. What do we know – we know that
T (m) ≤ T (m− 1) + Θ(1). Again what does this mean? It means there is some other unspecified constant
C ′ ≥ 0 such that T (m) ≤ C +C ′. But now we are in trouble – we can’t say T (m) ≤ C unless C ′ = 0, and
that cannot be assumed.

The Correct Induction Proof of the Correct Theorem. First agree upon the unspecified constant in the
recurrence. So, T (1) ≤ C and T (m) ≤ T (m− 1) + C for all m. Then assert (correctly) that T (n) ≤ Cn
for all n. Base case: T (1) ≤ C is correct. The Induction hypothesis holds for all 1 ≤ n < m and we
need to show that it holds for T (m). Well, T (m) ≤ T (m − 1) + C ≤ C(m − 1) + C = Cm. Therefore,
T (n) ≤ Cn for all n, implying T (n) = O(n).
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