
Hardness1

What should we do when we cannot find an efficient algorithm for a problem Π? Ideally, we would like to
then show that no one else can find an algorithm for Π because it is mathematically impossible to design a
fast algorithm which will always work correctly. Unfortunately, we are faaaaaaaaaaaaar from proving any
such theorem. Instead, in computer science we have recognized a huge collection of difficult problems for
which we believe that there are no fast algorithms and maybe one day in the future someone will prove
this belief correct. What is fascinating about this collection is that the problems in this collection are all
“equivalent”, in that if (a) one proves there are not polynomial time algorithms for any one of these problems,
it automatically proves hardness of all of these problems, and conversely, (b) if one finds a polynomial time
algorithm for any one of these problems, it automatically implies polynomial time algorithms for all of these
problems. Reflect on this rather marvelous situation.

This collection of problems are called2 NP-complete problems. And as of now, there are hundreds of
problems in this collection.

There is a whole course (COSC 39) at Dartmouth which builds the theory of computation rigorously culmi-
nating in the theory of NP-completeness. We have around an hour. So instead of telling what NP, P, and all
that jazz is, let me instead tell you how someone establishes “hardness”.

1 A Hard Problem, and the Idea of Polynomial Time Reductions

Recall what Boolean formulas are. There are Boolean variables and their negations; together these are called
literals. Examples are x1, ¬x2, and so on. Then there are clauses where each clause is a collection of literals
OR-red with each other. Examples being x1 ∨¬x2, x2 ∨x3 ∨¬x4, and so on. A SAT formula is the AND of
a collection of such clauses. A formula is satisfiable if there exists a setting of {true, false} to the variables
such that in every clause at least one of the literals evaluates to true. For example, the formula could be

φ = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x1)

in which case it is satisfiable by setting both x1 and x2 to true. On the other hand, the formula

φ′ = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2)

is unsatisfiable. You can check this by going over all the 4 possibilities of setting {true,false} to the x1, x2
variables. Now consider the following computational problem. This is the “seed” hard problem.

SAT
Input: A SAT formula with n variables and m clauses.
Output: Decide whether or not it is satisfiable.

The following conjecture is our belief that the SAT problem is hard. This conjecture is (equivalent to) the
P 6= NP conjecture.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2You must agree it’s a rather poor name for such a fascinating collection.

1

Conjecture 1. There is no polynomial time algorithm for SAT.

Remark: At this point, you may be inclined to say, “Sure! This problem is so unstructured, what
can you do but check all assignments? And there are 2n many of them.” Well, don’t! First, there are
many heuristics which do better than pure guessing and do well in practice. Unfortunately, none of
them provably give fast algorithms all the time. Second, the argument above can be made for many
problems. And if something we have learned in this course is that the study of algorithms is riddled
with surprises (and we are surprised by many riddles).

We are very far from either proving or disproving this conjecture. On the one hand, the best algorithm for
SAT runs in time “essentially” 2n (formally, it runs in 2n−o(n) time where recall o(n) is the set of functions
whose ratio with n tend to 0 as n tends to infinity). On the other hand, O(n+m)-time algorithms for SAT
are not ruled out. On a different track, as mentioned above, there are many fast heuristics for SAT which
solve the SAT formulas arising in practice very well. All in all, SAT is a very interesting beast which hasn’t
been tamed.

Polynomial Time Reductions. How is SAT being hard related to the problem Π that I cannot solve? For
simplicity, let us assume Π is a YES/NO problem, that is, for any input I to Π we need to either answer
YES or NO (think SUBSET-SUM, CYCLE?, etc). Now suppose we had an efficient method R which took
any SAT formula φ and returned an input Iφ of our problem Π such that φ is satisfiable implies Iφ has the
answer YES, and if φ is unsatisfiable then Iφ has the answer NO. In that case, if we believe Conjecture 1,
we would be forced to conclude there cannot be any efficient algorithmA to solve Π (thereby justifying our
failures). Why?

Well suppose not, and there was indeed an efficient algorithm A for solving Π. Then, consider the
following algorithm B for SAT:

a. Upon input φ, first run efficient procedureR(φ) to obtain Iφ.

b. Run the efficient procedure A(Iφ) to get answer YES or NO.

c. Return the same answer for φ.

The algorithm is correct due to the property of R. The algorithm is efficient since both R and A are
efficient (the latter by assumption, the former by construction). Contradicting Conjecture 1. Therefore, if
we believe Conjecture 1, we must conclude A cannot exist.

This kind of algorithm R which takes instance of one problem and gives us an instance of another problem
is called a reduction algorithm. We have already met them in our applications of flows-and-cuts.

A piece of notation: if such an efficient algorithm R as above existed which takes an instance of the
SAT problem to an instance of our problem Π, then we denote it as SAT �poly Π. What we just established
is the following lemma.

Lemma 1. If SAT �poly Π and Conjecture 1 is true, then there can be no polynomial time algorithm for Π.

And there was nothing special about SAT really. After establishing SAT �poly Π, suppose we next es-
tablished Π �poly Ψ for some other problem Ψ, then we would again be able to conclude there is no
polynomial time algorithm for Ψ, unless Conjecture 1 is false. Such problems which can be reduced from
SAT are called NP-hard problems.

2

2 An Example of Reduction : The Independent Set Problem

Let us illustrate one reduction algorithm. Recall the independent set problem : give an undirected graph
G = (V,E), a subset I ⊆ V of vertices in a graph is independent if for every pair of vertices u and v in I ,
(u, v) is not and edge. The independent set problem asks us to find as large an independent set as possible.
We look at the following YES/NO version of the problem. Clearly, if we could solve the optimization
version, we would be able to solve this YES/NO version.

IS
Input: An undirected graph G = (V,E) and a positive integer K.
Output: Decide whether or not there exists an independent set I in G with |I| ≥ K?

Lemma 2. SAT �poly IS

Proof. Let’s first state what we need to show. We want to describe an algorithmR which takes input a SAT
formula φ and outputs (a) an undirected graph Gφ = (Vφ, Eφ), and (b) a positive integer Kφ such that

R1. If φ is satisfiable, then there exists an independent set I ⊆ Vφ with |I| ≥ Kφ.

R2. If there exists an independent set I ⊆ Vφ with |I| ≥ Kφ, then φ is satisfiable.

Note that [R2.] is the “contrapositive” of what we want : we would like to prove “φ unsatisfiable ⇒ “all
independent sets I ⊆ Vφ have size < Kφ.”. Which is equivalent (remember logic from COSC 30?) to [R2.].

Let φ := C1∧C2∧· · ·∧Cm, where each Ci is a clause which contains literals Ci := αi,1∨αi,2∨· · ·∨αi,di .
Each αi,j is a literal, that is, it is either xk or ¬xk for some variable xk.

Now we describe the graph. The graph has 2n +
∑m

i=1 di vertices. These are divided into two classes:
Vvar and Vcl. For each variable xi of the formula φ, we add two vertices, named xi and ¬xi, into Vvar. We
add the edge (xi,¬xi) between them. For each clause Ci = αi,1 ∨ αi,2 ∨ · · · ∨ αi,di , we add di vertices
named αi,1, . . . , αi,di into Vcl. We add the complete graph between them. That is, we add edges (αi,j , αi,k)
for all 1 ≤ i < k ≤ di.

Now fix a literal γ. Say γ = ¬xi for concreteness. Note it appears exactly once in Vvar, but there can
be many appearances in Vcl as different αi,j’s. In fact it appears as many times this literal appears in the
formula. Next comes the crucial connector edges. For every literal γ, we add an edge between the unique
version in Vvar to every appearance of the literal αi,j = γ in Vcl. We give an example in Figure 1. Perhaps
you should try out one for yourself too.

To complete the reduction we also need to specify the parameter Kφ. We set Kφ = n + m, that is, the
sum of the number of variables and clauses. Now that the reduction is defined, we need to prove that it does
what it is supposed to do. That is, establish [R1.] and [R2.]

• Establishing [R1.]: Suppose φ is satisfiable. We now construct an independent set I ⊆ Vφ of size
n + m. Note that φ assigns some variables xi to true and some to false. For every variable xi that
is set to true, we pick the vertex corresponding to the complement xi from Vvar into I . Similarly, for
every variable xi that is set to false, we pick the vertex corresponding to xi from Vvar into I . At this
point note I is independent and is of size n.

Next, for every clause Ci = (αi,1 ∨ αi,2 ∨ · · · ∨ αi,di) we know at least one of the literals must be set
to true. We arbitrarily choose one of them, say αi,j , and pick the corresponding vertex in Vcl for this

3

Say 𝜙 :
Variables: x1 , x2, x3, x4

Clauses: (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ ¬ x4) ∧ (¬x1 ∨ x3 ∨ x4)

x1 ¬x1 x2 ¬x2 ¬x3 x4 ¬x4

x1

x2

¬x3
¬x2

x3

¬x4
¬x1

x3

x3

x4

Figure 1: Example for the reduction SAT � IS. For simplicity, we have drawn an example where every
clause has exactly 3 literals.

clause into I . Note that |I| is now exactly n + m. We now claim that this is independent. Note that
the only edge αi,j has to a vertex which is not of the form αi,k is to the vertex xt or xt in Vvar which
corresponds to the literal αi,j . Furthermore, since αi,j evaluates to true, by design the vertex to which
it is connected is not in I . Thus, adding the αi,j’s doesn’t violate independence. This establishes
[R1.].

• Establishing [R2.]: Now suppose there is an independent set I ⊆ Vφ of size ≥ n + m. Note that for
every pair of vertices {xt, xt} in Vvar, we can pick at most one of them into I . Thus, |I ∩ Vvar| ≤ n.
Similarly, for every collection {αi,1, . . . , αi,di} ⊆ Vcl, we can pick at most one vertex into I (since it’s
a complete graph between them). Thus, |I ∩ Vcl| ≤ m. Which means, if |I| ≥ n+m, we must have
equality, and I contains exactly one vertex from {xt, xt} for all 1 ≤ t ≤ n, and exactly one vertex
from {αi,1, . . . , αi,di} for all 1 ≤ i ≤ m.

We now describe an assignment to the variables of φ. For every pair {xt, xt}, if xt ∈ I , then we set xt
to false, and if xt ∈ I , we set xt to true. We claim this is a satisfying assignment. Suppose not. Then
there must exist a clause Ci = (αi,1∨αi,2∨ · · ·∨αi,di) such that all the literals have been set to false.
However, consider I ∩{αi,1, . . . , αi,di}; it contains a single vertex αi,j ∈ I . Suppose αi,j = xt. Note
(αi,j , xt) is an edge in Gφ. Since we set xt to false, it must be that xt ∈ I . But this contradicts that I
is independent. The case of αi,j = xt is analogous.

Therefore, our assignment must satisfy all clauses thereby establishing [R2.].

Theorem 1. If Conjecture 1 is true, then there is no polynomial time algorithm for the independent set
problem.

4

	A Hard Problem, and the Idea of Polynomial Time Reductions
	An Example of Reduction : The Independent Set Problem

