
Divide and Conquer: Counting Inversions1

1 Counting Inversions

We now look at a closely related problem to merge-sort. Given an array A[1 : n], the pair (i, j) for 1 ≤ i <
j ≤ n is called an inversion if A[i] > A[j]. For example, in the array [10, 20, 30, 50, 40], the pair (4, 5) is
an inversion.

COUNTING INVERSION

Input: An array A[1 : n]
Output: The number of inversions in A.
Size: n, the size of the array.

There is a naive O(n2) time algorithm: go over all pairs and check if they form an inversion or not. We
now apply the divide-and-conquer paradigm to do better.

If n = 1, then the number of inversions is 0. Otherwise, suppose we divide the array into two: A[1 : n/2]
and A[n/2 + 1 : n]. Recursively, suppose we have computed the number of inversions in A[1 : n/2] and
A[n/2 + 1 : n]. Let these be I1 and I2, respectively. Note that any inversion (i, j) in A[1 : n] satisfies

(a) either i < j ≤ n/2, which implies (i, j) is an inversion in A[1 : n/2], or

(b) n/2 + 1 ≤ i < j, which implies (i, j) is an inversion in A[n/2 + 1 : n], or

(c) i ≤ n/2 < j, and these are the extra inversions over I1 + I2 that we need to count.

Let’s call any (i, j) of type (c) above a cross inversion, and let C denote this number. Then by what we
said above, we need to return I1 + I2 + C. To obtain a “win”, we need to see if we can calculate C “much
faster” than O(n2) time. How do we do that?

After you think about it for a while, there may not seem to be any easy way to calculate C faster than
O(n2). Indeed, there could be Θ(n2) inversions in A[1 : n] and so shouldn’t it take that muct time to count
them? How do we get around this? There are two crucial observations that help here.

• The number of cross-inversions between A[1 : n/2] and A[n/2 + 1 : n] is the same as between
sort(A[1 : n/2]) and sort(A[n/2 + 1 : n]), where sort(P) is the sorted order of an array P .

• If A[1 : n/2] and A[n/2+1 : n] were sorted, then the cross-inversions can be calculated in O(n) time.
This may not be immediate, but if you understand the COMBINE subroutine above, then it should ring
a bell. We elaborate it on it below.

Cross-Inversions between Sorted Arrays. Given two sorted arrays P [1 : p] and Q[1 : q], we can count
the number of cross-inversion pairs (i, j) such that P [i] > Q[j] in O(n) time as follows. As in COMBINE

we start off with two pointers i, j initialized to 1. We also store a counter num initialized to 0 which, at the
end, is supposed to contain the answer C. We check if P [i] > Q[j] or not. If it isn’t, that is if P [i] ≤ Q[j],

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

then (i, j) is not a cross-inversion and we simply increment i = i + 1. Otherwise, if P [i] > Q[j], then we
increment num = num + (p− i + 1) and j = j + 1. Why do you increment by so much? Didn’t you find
(i, j) is an inversion and so you should increment by only +1? Well, not only is (i, j) a cross-inversion, so
are (i + 1, j), (i + 2, j), and so on till (p, j). This is crucially using the fact that P is sorted. By doing a
single comparison, because of sortedness, we discover a “bunch” of inversions. This gives us the “win” we
were looking for. The claim below explains it more formally. We stop when either i = p + 1 or j = q + 1.

Claim 1. At any stage, suppose the algorithm encounters P [i] > Q[j]. Then {(i′, j) : i′ ≥ i} are the only
cross-inversions which involve j.

Proof. Since P is sorted, P [i′] > Q[j] for all i′ ≥ i and so all such (i′, j) are all valid cross-inversions. Now
consider any i′′ < i. Since in the algorithm the pointer is at i > i′′, at some previous stage the algorithm
compared P [i′′] and Q[j′′] with j′′ ≤ j, and found P [i′′] ≤ Q[j′′]. But since Q is sorted, this would imply
P [i′′] ≤ Q[j]. This implies for all i′′ < i, (i′′, j) is not an inversion.

1: procedure COUNTCROSSINV(P [1 : p], Q[1 : q]):
2: . P and Q are sorted; outputs the number of (i, j) with P [i] > Q[j].
3: i← 1; j ← 1; num← 0.
4: while i < p + 1 and j < q + 1 do:
5: if (P [i] > Q[j]) then:
6: num← num + (p− i + 1)
7: j ← j + 1
8: else:
9: i← i + 1

Theorem 1. COUNTCROSSINV counts the number of cross inversions between P and Q in time O(p+
q).

Now we are armed to describe the divide-and-conquer algorithm for counting inversions.

1: procedure COUNTINV1(A[1 : n]):
2: . Counts the number of inversions in A[1 : n]
3: if n = 1 then:
4: return 0. . Singleton Array

5: m← bn/2c
6: I1 ←COUNTINV1(A[1 : m])
7: I2 ←COUNTINV1(A[m + 1 : n])
8: B1 ←MERGESORT(A[1 : m])
9: B2 ←MERGESORT(A[m + 1 : n])

10: C ←COUNTCROSSINV(B1, B2)
11: return I1 + I2 + C.

Let’s analyze the time complexity. As always, let T (n) be the worst case running time of COUNTINV1
on an array of length n. Let A[1 : n] be the array attaining this time, and let’s see the run of the algorithm

2

on this array. The time taken by Line 6 and Line 7 are T (bn/2c) and T (dn/2e) respecively. The time
taken by Line 10 takes O(n) time by what we described above. Furthermore, the Line 8 and Line 9 takes
O(n log n) time. Together, we get the following recurrence

T (n) ≤ T (bn/2c) + T (dn/2e) + O(n log n)

The above ‘almost’ looks like the merge-sort recurrence, and indeed the recurrence solves2 to T (n) =
O(n log2 n).

But there is something wasteful about the above algorithm. In particular, if you run it on a small example
by hand you will see that you are sorting a lot. And often the same sub-arrays. Whenever you see this, often
you can exploit this observation and get a faster algorithm?

Let us use this opportunity to introduce a new idea in the divide-and-conquer paradigm: get more by
asking for more. This “asking for more” technique is something you may have seen while proving statements
by induction where you can prove something you want by actually asking to prove something stronger by
induction. In this problem, we ask our algorithm to do more: given an array A[1 : n] it has to count the
inversions and also has to sort the array too. Now note that in this case Line 8 and Line 9 are not needed
any more; this is returned by the new stronger algorithm. We however need to also return the sorted array :
but this is what COMBINE precisely does3. So the final algorithm for counting inversions is below.

1: procedure SORT-AND-COUNT(A[1 : n]):
2: . Returns (B, I) where B = sort(A) and I is the number of inversions in A[1 : n]
3: if n = 1 then:
4: return (A, 0). . Singleton Array

5: m← bn/2c
6: (B1, I1)← SORT-AND-COUNT(A[1 : m])
7: (B2, I2)← SORT-AND-COUNT(A[m + 1 : n])
8: C ← COUNTCROSSINV(B1, B2)
9: B ← COMBINE(B1, B2)

10: return (B, I1 + I2 + C)

Now we see that the recurrence for the running time of SORT-AND-COUNT is precisely

T (n) ≤ T (bn/2c) + T (dn/2e) + O(n)

Theorem 2. SORT-AND-COUNT returns the number of inversions of an array A[1 : n] in O(n log n)
time.

As an application, you are now ready to solve Problem 1 of PSet 0. Go ahead and try it again!
2Warning: Master Theorem doesn’t apply. But if you go back to the kitty method proof, you should be able to recreate the

T (n) = O(n log2 n). Indeed, every “round” one puts in ≤ Cn logn instead of ≤ Cn, and possibly even smaller.
3Actually, the COUNTCROSSINV code looks so much like COMBINE, you should not really have two lines (Line 8 and Line 9

in SORT-AND-COUNT), but wrap both of these into a single subroutine. I have separate lines for conceptual clarity at the expense
of running time inefficency (but not in a way that the big-Oh picture is muddled). In your coding assignment, hopefully you will
keep this in mind.

3

	Counting Inversions

