
Divide and Conquer: Polynomial Multiplication via FFT1

In the last lecture, we saw how two polynomials can be multiplied fast by using divide-and-conquer. In
this supplement we cover a different approach to multiplying polynomials, but divide-and-conquer will still
be the strategy which would give the improvement. There are many pieces to this algorithm, and let us first
conceptually develop these pieces.

Polynomial Multiplication via Evaluation and Interpolation

In the polynomial multiplication problem, we are given coefficients of two polynomials P (x) and Q(x), and
we have to output the coefficients of the product R(x) = P (x) ·Q(x). Suppose we had a different problem.
Suppose that all we have to do is to construct an “oracle” which takes input a number a, and outputs R(a).
Thus, this oracle would be an implicit representation of the product polynomial R(x). In how much time
can you implement this oracle?

This is easy. We evaluate P (a). We evaluate Q(a). We multiply P (a) · Q(a) and return the answer.
Assuming number additions and multiplications are O(1) time operations, we see that the running time is
driven by the polynomial evaluation time for calculating P (a) and Q(a). Both of these take O(n) time, and
thus, the implicit representation of R takes O(n) time per query.

How does this help us come closer to the problem of finding the coefficients of R? Well, here is the main
insight which one recalls from ones algebra classes in high-school2. Since R is a degree 2n polynomial, if
we knew the values of R at 2n + 1 distinct numbers a0, a1, . . . , a2n, then we can obtain the coefficients of
R. This step is called interpolation. Indeed, think of the case when R is a degree 1 polynomial (a linear
function). If we knew A := R0 + R1a and B := R0 + R1b for two distinct numbers a and b, then we can
figure R0 and R1 out by a solving a system of simultaneous equations3.

So the main schema for polynomial multiplication is the following three steps:

a. Select 2n+ 1 distinct numbers a0, a1, . . . , a2n.

b. Evaluate R(a0), R(a1), . . . , R(a2n).

c. Interpolate.

However, as you can see there are big issues. The naive way of evaluating R(a) takes O(n) time.
Therefore, Step 2 seems to take O(n2) time, which is a show-stopper in itself (and we haven’t even gone
to Step 3). The second observation, and the key observation, is the following : we have some freedom in
choosing the distinct numbers a0, a1, . . . , a2n. Is it possible to choose them in a clever way such that all the
R(ai)’s can be together figured out in a much faster way? The answer is affirmative, but to get there we first
shift our viewpoint.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2I guess only the case of degree-1 polynomials is covered in high-school?
3Indeed, R1 = A−B

a−b and R0 = A− aR1 = aB−Ab
a−b .

1



Polynomial Evaluation and Interpolation via Matrix-Vector Multiplication

Let P (x) = P0+P1x+ · · ·+Pnx
n be a degree n polynomial. Given a number a, one think of the evaluation

of P (a) as a vector-vector multiplication as follows.

P (a) =
(
1 a a2 · · · an

)
·


P0

P1

P2
...
Pn


Remark: This way of looking a polynomial evaluation is a very useful viewpoint helpful in many
different settings.

And therefore, if we have to evaluate the polynomial P at n + 1 different locations, then the values at all
these locations can be expressed as a matrix-vector multiplication as follows.

P (a0)
P (a1)
P (a2)

...
P (an)

 =


1 a0 a20 · · · an0
1 a1 a21 · · · an1
1 a2 a22 · · · an2
...

. . .
...

1 an a2n · · · ann

 ·

P0

P1

P2
...
Pn


In plain English this says that the evaluation of the polynomial at n + 1 locations is the product of a very
special looking matrix with the vector of coefficients. The matrix is special in that on every row, the entries
are the different powers of some numbers. These matrices have a name; they are called Vandermonde
matrices.

One very important property of Vandermonde matrices is that if all the ai’s are distinct, then the matrix
is invertible. This property is basically the interpolation property. For note that if M−1 is the inverse of the
matrix M above, then if we knew the value of P (ai) for 0 ≤ i ≤ n, then the coefficients P0, P1, . . . , Pn can
be found by multiplying M−1 with the vector of the P (ai)’s. If you are interested, you should check this
for the case of n = 1 and see that it gives the solution to the two simultaneous equations.

To get back to our algorithm, we would now like to find a0, a1, . . . , an such that (a) the matrix-vector
product M · v, where M is the resulting Vandermonde matrix and v is the vector of coefficients of P and
Q, can be found much fast (for evaluation), (b) the inverse M−1 can be found fast, and finally,(c) M−1 · v,
where v is not the evaluation of R at different points, can also be found fast (for interpolation). “Fast” here
means much better than O(n2) time. If we could find such magical ai’s, then indeed we would have found
a fast algorithm for multiplying polynomials. To find them, we need to venture into the complex plane.

Complex Roots of Unity

Since we need to find ai’s such that the resulting Vandermonde matrix M can be multiplied with a vector
v fast, one way would be to select ai’s such that the rows look similar. Of course, if we picked all ai’s the
same, then we would get this for free. But is there something else we can pick?

A quick refresher on complex numbers. In real numbers, 1 has only one cube-root: +1. But, if one
looks at the equation z3 = 1, then this is a degree 3 equation, and it in fact has 3 “roots” or solutions. One is

2



z = 1. The others happen to be complex numbers. Indeed, they are ω = e2iπ/3 and ω2 = e4iπ/3. In general,
there are n-roots of unity for any number n, and they are 1, ω, ω2, . . . , ωn−1, where ω = e2iπ/n. Note that
ωn = e2iπ = 1 by Euler’s identity. Also note if n is even, then ωn/2 = −1.

Now, for our problem at hand, let (a0, a1, . . . , an) be the (n + 1)th complex roots of unity. It will be
useful for us to assume (n+ 1) is a power of 2. So, n = 2` − 1. That is the (n+ 1)th roots of unity are are

(1, ω, ω2, . . . , ω2`−1) where ω = e
2iπ

2` . How does the Vandermonde matrix look like? Well, we see that it
looks like

Mn(ω) =


1 1 1 · · · 1
1 ω ω2 · · · ωn

1 ω2 ω4 · · · ω2n

...
...

...
. . .

...
1 ωn ω2n · · · ω


Example of the case ` = 1, 2 and 3 are as follows.

M1(ω) =

(
1 1
1 ω

)
M3(ω) =


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 M7(ω) =



1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


In particular, if we index the rows from j = 0 to 2`− 1, and the columns also from k = 0 to 2`− 1, then

the (j, k)th entry is precisely ωjk. In particular, the matrix is symmetric. It has another beautiful property.

Claim 1. The inverse of the Vandermonde matrix Mn(ω) is the Vandermonde matrix 1
n+1 ·Mn(ω

n), where
ω is the (n+ 1)th root of unity.

Proof. If we take the product of Mn(ω) ·Mn(ω
n), and consider the (i, j)th entry, we get that it is

n∑
k=0

Mn(ω)[i, k] ·Mn(ω
n)[k, j] =

n∑
k=0

ωik · (ωn)jk =
n∑
k=0

ωk·(i+nj)

Now, if i = j, then i + nj = (n + 1)i, and thus each entry in the sum above is ωk·(i+nj) = ωki(n+1) = 1
since ω is the (n+ 1)th root of unity. Thus, if i = j, then the (i, j)th entry of Mn(ω) ·Mn(ω

n) is (n+ 1).
On the other hand if i 6= j, then ω̂ := ω(i+nj) is another (n + 1)th root of unity. Thus, the sum above

is a geometric sum of the roots of unity. This equals zero since it equals 1−ω̂(n+1)

1−ω̂ , and the numerator is 0.
Thus, Mn(ω) ·Mn(ω

n) is a diagonal matrix with (n+ 1) on the diagonal. This implies the claim.

Thus, if we can figure out a fast algorithm to multiply Mn(ω) · v for some vector v when ω is a root
of unity, then we also get for free the product Mn(ω)

−1 · v. Next, we see the recursive structure of Mn(ω)
which allows one to compute Mn(ω) · v is O(n log n) time.

3



The Recursive Structure of Mn(ω)

The way to look at this is to first reorder the matrix such that we first have the “even” columns of M and
then the “odd” columns of M . Let me actually explain this using an example. Let n = 3, and then, we get
(recall ω4 = 1) that

M3(ω) =


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω


For concreteness, let’s fix a vector ~P := (P0, P1, P2, P3), and we want to compute M3(ω) · ~P . So, we want
to compute 

W0

W1

W2

W3

 =


1 1 1 1
1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω

 ·

P0

P1

P2

P3


When we shift the evens and odds, we also shift the W ’s and the P ’s to get that

W0

W2

W1

W3

 =


1 1 1 1
1 ω2 ω ω3

1 1 ω2 ω2

1 ω2 ω3 ω

 ·

P0

P2

P1

P3


Divide the matrix above into four 2× 2 matrices

(
A B
C D

)
. And so, we get

(
W0

W2

)
= A ·

(
P0

P2

)
+B ·

(
P1

P3

)
and

(
W1

W3

)
= C ·

(
P0

P2

)
+D ·

(
P1

P3

)
So, we have replaced the matrix-vector product to 4 “smaller” matrix-vector products (plus some additions).
As we know, this won’t be enough for divide-and-conquer; this won’t give anything better than O(n2). But
now, we make our main observations:

(a) A itself is a 2× 2 Vandermonde matrix corresponding to ω2.

(b) The matrix C = A.

(c) The matrix B is a “shift” of A, in that, the first row of B is the same as first row of A, but the second
row of B is ω times the second row of A.

(d) The matrix D is also a “shift” of A, in that, the first row of B is the same as first row of A, but the
second row of B is ω3 = −ω times the second row of A.

Why is this useful? Well, this tells us that if we know A ·
(
P0

P2

)
and A ·

(
P1

P3

)
, then we can calculate

(W0,W1,W2,W3). Indeed, we can obtain B ·
(
P1

P3

)
by multiplying the second row of A ·

(
P1

P3

)
with ω.

And adding this with A ·
(
P0

P2

)
gives

(
W0

W2

)
. Similarly, we can obtain

(
W1

W3

)
. Thus, we have reduced the

4



problem to two matrix-vector products where the matrix is a Vandermonde matrix of half the dimension,
and this is what leads to the super-saving.

Let us now give more details about the general case. First, by just padding the polynomial with 0’s we may
assume n is such that n+ 1 is a power of 2. So, (n+ 1) = 2`. Let ω be an 2`th root of unity. We consider
the matrix Mn(ω) with (n + 1) rows and (n + 1) columns whose (j, k)th entry is ωjk. We first shift the
columns considering first the even columns and then the odd columns. Let this shifted matrix be called N .
Given a vector v, we can construct Mn(ω) · v by evaluating N · w where w is a shift of v by taking all
even coordinates of v followed by odd-coordinates of v. We index the columns of N as (0, 2, 4, . . . , 2`− 2)

followed by (1, 3, 5, . . . , 2`−1). Now, we exploit the recursive substructure of N . We break N =

(
A B
C D

)
,

where A,B,C,D are four 2`−1 × 2`−1 matrices.

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


−→



1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 ω ω3 ω5 ω7

1 ω4 ω6 1 ω2 ω6 ω2 ω6

1 ω6 ω4 ω2 ω3 ω ω7 ω5

1 1 1 1 ω4 ω4 ω4 ω4

1 ω2 ω4 ω6 ω5 ω7 ω ω3

1 ω4 1 ω4 ω6 ω2 ω6 ω2

1 ω6 ω4 ω2 ω7 ω5 ω3 ω


What’s the (j, k)th entry of A? Note that this corresponds to the (j, 2k)th entry of Mn(ω). And this

would therefore be ω2jk = (ω2)jk. What is the (j, k)th entry of C? This corresponds to the (j+2`−1, 2k)th
entry of Mn(ω). Therefore, this value is ω(j+2`−1)·2k = ω2jk · ω2`k = (ω2)jk. The last equality follows
because ω2` = 1. Therefore, A = C.

How about B and D? What’s the (j, k)th entry of B? This corresponds to the (j, 2k + 1)th entry
of Mn(ω). Therefore, this would be ωj(2k+1) = ωj ·

(
ω2
)jk. And finally, the (j, k)th entry of D is the

(j+2`−1, 2k+1)th entry of Mn(ω). Therefore, this value would be ω(j+2`−1)(2k+1) = ω2jk ·ω2`−1 ·ωj ·ω2`k.
Using the fact that ω2`−1

= −1, we get that this is −ωj · (ω2)jk. Thus, we get that (a) A is a Vandermonde
matrix with 2`−1 rows and columns corresponding a root of unity of 2`−1, (b) C = A, (c) B is a “shifted”
version of A where the jth row has been multiplied by ωj , and (d) D is a shifted version of A where the jth
row has been multiplied by −ωj . Below is another illustration

Therefore, to evaluate M2`(ω)·v, we first recursively evaluate b1 = M2`−1(ω2)·v1 and b2 = M2`−1(ω2)·
v2, where v1 is the vector formed by taking even coordinates of v and v2 is the one obtained by taking odd
coordinates of v. Next, we evaluate the shifted version of b2 by multiplying the jth row with ωj to obtain
b3. And then, we return the concatenation of (b1 + b3) and (b1 − b3).

5



1: procedure EVALPOLY(`, v, ω):. v is an 2`-dimensional array; ω is a 2`th root of unity.
2: . Evaluate M2`−1(ω) ·v. If v contains the coefficients of a polynomial, then the matrix-vector

product contains the evaluation of the polynomial at the 2`th roots of unity.
3: . Addition, Multiplication of complex numbers assumed to be O(1) time.
4: if ` = 0 then:
5: return v. . Singleton Array

6: v1 be the 2`−1 dimensional vector comprising the even components of v.
7: v2 be the 2`−1 dimensional vector comprising the odd components of v.
8: b1 ← EVALPOLY(`− 1, v1, ω

2).
9: b2 ← EVALPOLY(`− 1, v2, ω

2).
10: Compute b3 from b2 by multiplying jth coordinate by ωj , for 0 ≤ j ≤ 2` − 1.
11: w ← (b1 + b3) ◦ (b1 − b3), where ◦ is the concatenation operator.
12: Obtain a from w by “reshuffling”: a0 = w0, a1 = w2`−1+1, a2 = w1, a3 = w2`−1+2, and so

on.
13: return a.

The running time of the above algorithm is governed by the recurrence T (2`) = 2T (2`−1) + O(2`) which
equates to O(`2`).

Theorem 1. Assuming complex numbers can be added and multiplied in O(1) time, for any 2` dimen-
sional vector v, EVALPOLY(`, v, ω) returns the vector M2`(ω) · v in O(n log n) time, where n = 2`.

Remark: We should remark here that we are multiplying complex numbers in Line 10 and adding
them in line Line 11. We should also mention that assuming addition and multiplication of complex
numbers in O(1) time is a big assumption. Indeed, this is a big assumption even for real numbers as
the precision (how many bits after the decimal) to which we store it matters. Recall that the input to
the problem has only integer coefficients. Indeed, integer polynomial multiplication needs to take care
of this. And only very recently (in 2019) was an O(n log n) time algorithm for multiplying polynomials
was announced, which assumed only O(1) operations for integer arithmetic operations.

The O(n log n) time polynomial multiplication algorithm is as follows.

1: procedure FFT-POLYMULT(P,Q):. P and Q are degree n polynomials
2: Pick the smallest power of 2 which is bigger than 2n. Let this be 2`.
3: Consider P and Q as degree 2` polynomials by substituting 0 whenever the degree > n.
4: Abuse notation and let the arrays P [0 : 2` − 1] and Q[0 : 2` − 1] contain these coefficients.
5: Let ω be a 2`th root of unity.
6: A1 ← EVALPOLY(`, P, ω). . A1 is an 2`-length array.
7: A2 ← EVALPOLY(`,Q, ω). . A1 is an 2`-length array.
8: Obtain A by coordinate-wise multiplying A1 and A2. . A is an 2`-length array.
9: R← EVALPOLY(`, A, ω2`−1)

10: return R.

6


