
Divide and Conquer: Karatsuba’s Polynomial Multiplication1

In this lecture we look at a really fascinating application of the divide-and-conquer paradigm. The
problem is that of multiplying two univariate polynomials.

Recall, given a variable x, a degree n polynomial p(x) is of the form

p(x) =
n∑

i=0

pi · xi

where pi is the coefficient of the degree i monomial xi. A degree n polynomial has (n + 1) monomials
(including the constant monomial x0 = 1) and coefficients.

Given two degree n polynomials, p(x) and q(x), the product of the two polynomials p(x) · q(x) is
another polynomial r(x). Let us recall this with an example. Consider

p(x) = 1 + x + x2 and q(x) = 2 + 3x + x2

Then, the product polynomial is

r(x) = (1 + x + x2)(2 + 3x + x2) = 2 + 5x + 6x2 + 4x3 + x4

Indeed, in general, if p(x) and q(x) are degree n polynomials, then r(x) is a degree 2n polynomial, whose
coefficient rk for the monomial xk, 0 ≤ k ≤ 2n is given by the formula

rk =

{∑
0≤i≤k pi · qk−i if k ≤ n∑
(k−n)≤i≤n pi · qk−i if n < k ≤ 2n

(1)

For instance, r2 = p0q2 + p1q1 + p2q0.

MULTIPLYING POLYNOMIALS

Input: Coefficients of two degree n polynomials: arrays P [0 : n] and Q[0 : n]
Output: Coefficients of the product polynomial: array R[0 : 2n].
Size: n, the length of P and Q.

We also assume that every P [i], Q[j] are “small” numbers ; they can be added and multiplied in O(1)
time.

An O(n2) time algorithm follows from the formula (1). Indeed, for every k, where 0 ≤ k ≤ 2n, we need
compute only a summation. The kth summation adds at most (n + 1) summands, and each summand is
product of two numbers. The summands can be found using a for-loop taking O(n) time. In sum, every
R[k], individually, can be computed in O(n) time. Since there are 2n + 1 different k’s, one can figure the
whole R[0 : 2n] out in O(n2) time.

How can we do better? Perhaps one thought that may come to you is the following: each individual
R[k] computation sums up many different products; perhaps these are shared by different k’s? And if
so, one probably doesn’t need to recompute. Unfortunately, that is not the case. For example R[2] =
P [0]Q[2]+P [1]Q[1]+P [2]Q[0]. But, R[3] = P [0]Q[3]+P [1]Q[2]+P [2]Q[1]+P [3]Q[0]. No summands
are shared. Bummer!

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



Remark: At this point, it is natural to probably say, “Maybe one cannot do any better.” And if so, you
are in venerable company. The story goes that in the early 1960s the famous Russian mathematician
Andrei Kolmogorov held a seminar with the objective to show that any algorithm must need Ω(n2)
time to multiply two degree n polynomials. After the first meeting, a young student named Anatoly
Karatsuba came up with the algorithm we are about to describe. Kolmogorov canceled the remainder
of the seminar. Like all good stories, this is probably untrue.

And the algorithm is a simple, but magical, divide-and-conquer algorithm. Let’s begin.

Remark: It may be useful to keep a “running example” to illustrate the algorithm. So, suppose our
example (for n = 3) is

p(x) = 1 + 3x + x2 + 2x3 and q(x) = 2 + x + 2x2 + x3

The product polynomial is

r(x) = 2 + 7x + 7x2 + 12x3 + 7x4 + 5x5 + 2x6

The boldface is just to make you aware that it is a specific example.

We will start with an algorithm which doesn’t quite do the job, and then fix it. Let m = dn/2e. Consider
the polynomial p(x) and write it as

p(x) = p1(x) + xmp2(x) where p1(x) =
m−1∑
i=0

P [i]xi and p2(x) =
n−m∑
i=0

P [m + i]xi (2)

Similarly write

q(x) = q1(x) + xmq2(x) where q1(x) =
m−1∑
j=0

Q[j]xj and q2(x) =
n−m∑
j=0

Q[m + j]xj (3)

Note that all four polynomials p1(x), p2(x), q1(x), q2(x) have degree ≤ bn/2c. For our example, we have
m = d3/2e = 2, and thus

p1(x) = 1 + 3x, p2(x) = 1 + 2x, q1(x) = 2 + x, q2(x) = 2 + x

Now, we see that the product r(x) of p(x) and q(x) can be written thus:

r(x) = (p1(x) + xmp2(x)) · (q1(x) + xmq2(x))

=
(
p1(x) · q1(x)

)
+ xm ·

(
p1(x) · q2(x) + p2(x) · q1(x)

)
+ x2m ·

(
p2(x) · q2(x)

)
(4)

Therefore, (4) implies that r(x) can be computed by recursively multiplying the four pairs of polynomials
(p1(x), q1(x)), (p1(x), q2(x)), (p2(x), q1(x)), and (p2(x), q2(x)). Each pair is a product of polynomials of
degree at most bn/2c. After computing these four products, we need to add these four product polynomials
up. This is the “conquer/combine” step.

2



How much time does it take to add up two degree k polynomials? Let us figure this out. Given two
degree n polynomials, let us now call them a(x) and b(x), the addition is another degree n polynomial
whose kth coefficient is simply the sum of the corresponding kth coefficients of a(x) and b(x). Thus, one
can obtain the sum of two degree n polynomials in O(n) time.

To summarize, the suggested recursive algorithm is to compute four products: (1) r1(x) = p1(x)q1(x),
r2(x) = p1(x)q2(x), r3(x) = p2(x)q1(x), and r4(x) = p2(x)q2(x) recursively. And then, outputting
r(x) = r1(x) + xm · (r2(x) + r3(x)) + x2mr4(x). Note that x2mr4(x) is simply another polynomial
whose coefficients are “shifted” by 2m. The following pseudocode gives the outline (but I am not providing
details).

1: procedure MULTPOLYDC(p(x), q(x)):. We want to return p(x) · r(x).
2: m← dn/2e
3: Form the polynomials p1(x), p2(x), q1(x), q2(x) respectively. . This takes O(n) time.
4: r1(x)←MULTPOLYDC(p1, q1) . This takes T (dn/2e) time.
5: r2(x)←MULTPOLYDC(p1, q2) . This takes T (dn/2e) time.
6: r3(x)←MULTPOLYDC(p2, q1). This takes T (dn/2e) time.
7: r4(x)←MULTPOLYDC(p2, q2). This takes T (dn/2e) time.
8: Form r(x) by combining r1(x), r2(x), r3(x), r4(x). . This takes O(n) time since adding polyno-

mials takes O(n) time.

Just to illustrate, for our example polynomials, we get that

r1(x) = 2 + 7x + 3x2, r2(x) = 2 + 7x + 3x2, r3(x) = 2 + 5x + 2x2, r4(x) = 2 + 5x + 2x2,

And therefore, the algorithm would return the polynomial

(2 + 7x + 3x2) + x2
(
(2 + 7x + 3x2) + (2 + 5x + 2x2)

)
+ x4

(
2 + 5x + 2x2

)
which equals

2+7x+3x2 +
(
4x2 + 12x3 + 5x4

)
+
(
2x4 + 5x5 + 2x6

)
= 2+7x+7x2 +12x3 +7x4 +5x5 +2x6 (5)

which is what it should be (that is, r(x).).

What is the running time of the above algorithm? Well, it breaks a problem into four subproblems
each of size bn/2c and then combines them in time O(n). That is, the recurrence inequality governing the
running time is

T (n) ≤ 4T (bn/2c) + O(n)

We apply the Master Theorem, and then we get T (n) = O(n2). Sigh! Much ado about nothing?

Next comes the Aha! insightful observation. We observe that we really don’t need the individual products
p1(x) · q2(x) and p2(x) · q1(x) at all. What we need is just their sum. Can we compute the sum without
computing the individual summands? The answer is yes! It follows from the following trivial but key
observation.

Observation 1.

p1(x)q2(x) + p2(x)q1(x) =
(
p1(x) + p2(x)

)
·
(
q1(x) + q2(x)

)
−
(
p1(x) · q1(x)

)
−
(
p2(x) · q2(x)

)
3



Proof. Just open up the brackets and see.

Again going back to our example, we see that

(p1(x) + p2(x)) · (q1(x) + q2(x)) = (2 + 5x) · (4 + 2x) = (8 + 24x + 10x2)

And thus,

r2(x) + r3(x) = (8 + 24x + 10x2)− (2 + 7x + 3x2)− (2 + 5x + 2x2) = 4 + 12x + 5x2

which is indeed the case. And as in (5), we proceed to get the right product of p(x) and q(x).
Why is this observation useful? Well, note that p1(x)q1(x) and p2(x)q2(x) have been computed already

(these are r1(x) and r4(x)).

Therefore, to compute the sum in the LHS, that is r2(x) + r3(x), we don’t have to compute them
individually, but rather compute the product (p1(x) + q1(x)) · (p2(x) + q2(x)) and subtract the r1(x) and
r4(x) from this. Thus, we can get away with three multiplications of smaller polynomials.

1: procedure KARATMULTPOLY(p(x), q(x)):. We want to return p(x) · r(x).
2: m← dn/2e
3: Form the polynomials p1(x), p2(x), q1(x), q2(x) respectively. . This takes O(n) time.
4: r1(x)←KARATMULTPOLY(p1, q1) . This takes T (bn/2c) time.
5: r4(x)←KARATMULTPOLY(p2, q2) . This takes T (bn/2c) time.
6: Compute polynomials p′(x) = p1(x) + p2(x) and q′(x) = q1(x) + q2(x).. This takes O(n)

time since adding polynomials takes O(n) time.
7: s(x)←KARATMULTPOLY(p′, q′). This takes T (bn/2c) time.
8: t(x) ← s(x)− r1(x)− r4(x). . This takes O(n) time since adding/subtracting polynomials takes

O(n) time.
9: Form r(x) by combining r1(x), r4(x), t(x). More precisely, r(x) = r1(x)+xm · t(x)+x2m ·

r4(x). . This takes O(n) time since adding polynomials takes O(n) time.

One can now see that the recurrence inequality governing the above algorithm becomes

T (n) ≤ 3T (dn/2e) + Θ(n)

which gives us the following.

Theorem 1. The algorithm KARATMULTPOLY multiplies two n-degree univariate polynomials in
O(nlog2 3) = O(n1.59) time.

Below, we give another pseudocode which considers the input as arrays of the coefficients. This may
help you in actually coding it up. Indeed, you this will be asked in the coding assignment.

4



1: procedure KARATMULTPOLY(P [0 : n], Q[0 : n]):. We want to return R[0 : 2n].
2: if n = 0, 1 then:
3: return R[0 : 2n] using the naive multiplication
4: m = dn/2e.
5: . Recall definitions of p1(x), p2(x), q1(x), q2(x) from (2),(3)
6: for 0 ≤ i ≤ m− 1 do
7: P ′[i] = (P [i] + P [m + i])
8: Q′[i] = (Q[i] + Q[m + i])

9: if n > 2m− 1 then: . In which case n = 2m since m = n/2 or m = (n + 1)/2.
10: P ′[m] = P [n]
11: Q′[m] = Q[n]
12: else:
13: P ′[m] = Q′[m] = 0

14: . Now P ′ has the coefficients of p1(x) + p2(x). Q′ has the coefficients of q1(x) + q2(x).
15: . Their degrees are m− 1 or m depending on the parity of n.
16: . The else statement above forces degree m.
17:

18: R1[0 : 2(m− 1)] = KARATMULTPOLY (P [0 : m− 1], Q[0 : m− 1])
19: R2[0 : 2(n−m)] = KARATMULTPOLY (P [m : n], Q[m : n])
20: R3[0 : 2m] = KARATMULTPOLY (P ′[0 : m], Q′[0 : m])
21: . R1 has the coefficients of p1(x) · q1(x)
22: . R2 has the coefficients of p2(x) · q2(x)
23: . R3 has the coefficients of (p1(x) + p2(x)) · (q1(x) + q2(x))
24: . Also note that R1, R2, R3 all have length ≤ 2m. We assume they all are 2m length by

padding 0’s.
25: for 0 ≤ i ≤ 2m do:
26: R4[i] = (R3[i]−R1[i]−R2[i])
27: . R4 has the coefficients of p1(x) · q2(x) + p2(x) · q1(x) and is degree 2m
28: for 0 ≤ i ≤ 2n do:
29: R[i] = R1[i] + R4[i−m] + R2[i− 2m]
30: . We assume an array ‘returns 0’ if indexed out of its range. For instance, R4[−1] returns

0 and R1[2n] returns 0.
31: . When you actually code it, you need a few “if” statements to implement the above.

Please do that – it’s super instructive.
32: return R[0 : 2n]

5


