
Communicating Algorithms1

One of the goals of this course is to teach how to communicate algorithms to other humans. This is not
as trivial as it sounds. To illustrate this, let me take the example mentioned at the end of Lecture 1’s notes.

MAX&MIN

Input: An array A[1 : n]
Output: A maximum element of A and a minimum element of A.
Size: The number of elements in the array, that is, n.

I want to tell you the algorithm which can solve the above problem making at most 3n/2 comparisons.
This is better than the 2n − 3 comparison algorithm of first finding the maximum, and then finding the
minimum. Before I show the pseudocode of the algorithm, I want to first describe the idea in plain English.
The reason is that we are trying to communicate to humans (this is important to remember). The issue with
English, however, is that it is often vague, and therefore writing ideas down requires some skill.

The English Description. Given the array, we first pair up2 neighboring elements. For now, let us consider
the case when the length n is even; we will take care of the case of odd n subsequently. So, for instance3,
if the array was A = [13, 4,−3, 5, 90, 34], we are pairing up the elements4 as (13, 4), (−3, 5), and (90, 34).
We compare the paired elements, and we put the larger number into a list B and the smaller number into
a list C. At this point, note5 that the maximum element of A must lie in B, and the minimum element of
A must lie in C. Why6? Because, the maximum element by definition will be larger than its partner and
therefore be sent to B. A similar argument shows that the minimum element of A will be in C. Therefore,
to complete the algorithm, we simply return the maximum element of B and the minimum element of C.
This completes the description7 of the algorithm when n is even.

To take care of the case of odd n, we pair the first (n − 1) elements, that is, A[1 : n − 1], to obtain
the lists B and C as above. Then, we simply append A[n] to both B and C. Note that the maximum of A
is still in B (even if A[n] were the maximum), and the minimum of A is still in C (even if A[n] were the
minimum). The algorithm returns the maximum element of B and minimum element of C. This completes
the description of the algorithm in all cases8.

Analysis. Let us see how many comparisons we make. For the case of even n, we make n
2 comparisons to

get the lists B and C. Note that both B and C have length n/2 each. Finding the min and max in each takes
(n2 − 1), and thus the total number of comparisons is n

2 +
(
n
2 − 1

)
+
(
n
2 − 1

)
= 3n

2 − 2.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2This is a vague statement. But hopefully expressive enough to understand
3Always a good idea to give examples, especially, when you feel the description is vague (as is probably here)
4Note that at this point I am not caring what data-structure I will use to pair up. That is not important for the idea.
5This is where we are making the key observation that imply the algorithm’s correctness. And this will help the human reader

immensely to understand what is going on.
6One shouldn’t be so colloquial, but I pepper my proofs in lecture notes to sort of earmark parts of the argument which I feel

are not completely trivial. You should do the same, and then probably erase the “Why?”s
7At this point, most readers should be (a) have a basic idea of what the algorithm does, (b) should also know why the algorithm

is correct, and (c) should be reasonably confident that they can implement it.
8Do you see how the understanding of the odd case was made easier because the even case was explained earlier? The even

case contains the essence of this algorithm. Always, try to describe the essence of your algorithms first.

1



For the case of odd n, we make n−1
2 comparisons to get B and C. Then we append A[n] resulting in

the lengths of B and C being n−1
2 + 1 = n+1

2 each. Their mins and maxes can be found in n+1
2 − 1 = n−1

2

time each. Thus, the total time is 3(n−1)
2 .

Pseudocode. Now, let us write the pseudocode of the above algorithm. It is really closer to the English
version than the code. It is used to iron out vagueness (in this case, the pairing).

1: procedure MAXMIN(A[1 : n]):
2: . Returns a maximum and a minimum element of A.
3: Initialize two empty lists B and C.
4: for i = 1 to bn/2c do:
5: Compare A[2i− 1] and A[2i]. . Compare neighboring pairs.
6: Send the larger number to B and the smaller to C.
7: If n is odd, then send A[n] to both B and C.
8: return max(B) and min(C).

How should you never describe an algorithm. I cannot stress this strongly enough

Pseudo-code is not code with “types and semicolons9” removed.

Describing an algorithm as code is an exasperating way to communicate10 an algorithm. To illustrate this,
forget all the description of the algorithm above, and imagine you are hearing the problem for the first time.
You are amazed to hear that the max and min can be found using 3n

2 comparisons...and then you see this11:

1 def MAXMIN(A):
2 n = len(A)
3 B = list()
4 C = list()
5 for j in range(n//2):
6 if (A[2*j] < A[2*j+1]):
7 B.append(A[2*j+1])
8 C.append(A[2*j])
9 else:

10 C.append(A[2*j+1])
11 B.append(A[2*j])
12 if(n % 2 == 1):
13 B.append(A[n-1])
14 C.append(A[n-1])
15 r = 0
16 for j in range(1, len(B)):
17 if(B[j] > B[r]):
18 r = j
19 s = 0
20 for j in range(1, len(C)):
21 if(C[j] < C[s]):
22 s = j
23 return (B[r],C[s])
24

9Python doesn’t even have these
10Imagine being told a story, one letter at a time
11This code is written by me and not by any of you. It is especially beastly for it is (deliberately) not commented at all.

2



What would your reaction be? You would have to first parse the above code to see what it is doing. However,
even after parsing it, you don’t immediately understand it. Why is the code doing what it is doing? It can
be pretty time-consuming. So please, never describe any algorithm to a human using code12.

12But try coding up all your algorithms.

3


